Skip to main content

The Basal Ganglia

  • Chapter
  • First Online:
The Neuropathology of Schizophrenia
  • 709 Accesses

Abstract

For a considerable time, the basal ganglia were thought to be primarily concerned with movement and balance, and therefore were not considered to have the same importance in research in psychiatric disorders in the same manner that other brain regions were. However, the expansion of our understanding of basal ganglia function to include cognitive, executive and emotional functions as well as motor has led to more interest in these structures. This is particularly evident with the origin of the D2-mediated nigrostriatal pathway arising in the substantia nigra, a key output nucleus of the basal ganglia, being the target of modern anti-psychotic drugs. Despite a renewed interest in these nuclei, there has been very little pathological research conducted upon them, although what there is does suggest similar cellular disruption in schizophrenia as are observed in other brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Purdon-Martin J. Hemichorea resulting from a location lesion of the brain (the syndrome of the body of Luys). Brain. 1927;50:637–51.

    Article  Google Scholar 

  2. Wilson S. Disorders of motility and tone. Lancet. 1925;1:1–103.

    Google Scholar 

  3. Lanciego JL, Luquin N, Obeso JA. Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med. 2012;2(12):a009621.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Dahlström A, Fuxe K. Localization of monoamines in the lower brain stem. Experientia. 1964;20(7):398–9.

    Article  PubMed  Google Scholar 

  5. Fallon JH, Moore RY. Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol. 1978;180(3):545–80.

    Article  CAS  PubMed  Google Scholar 

  6. Haber SN, Calzavara R. The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull. 2009;78(2–3):69–74.

    Article  PubMed  Google Scholar 

  7. Smith Y, Raju DV, Pare JF, Sidibe M. The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci. 2004;27(9):520–7.

    Article  CAS  PubMed  Google Scholar 

  8. Heckers S. Neuropathology of schizophrenia: cortex, thalamus, basal ganglia, and neurotransmitter-specific projection systems. Schizophr Bull. 1997;23(3):403–21.

    Article  CAS  PubMed  Google Scholar 

  9. Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994;266(5184):458–61.

    Article  CAS  PubMed  Google Scholar 

  10. Yager LM, Garcia AF, Wunsch AM, Ferguson SM. The ins and outs of the striatum: role in drug addiction. Neuroscience. 2015;301:529–41.

    Article  CAS  PubMed  Google Scholar 

  11. Davis KL, Kahn RS, Ko G, Davidson M. Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry. 1991;148(11):1474–86.

    Article  CAS  PubMed  Google Scholar 

  12. Howes OD, Williams M, Ibrahim K, Leung G, Egerton A, McGuire PK, Turkheimer F. Midbrain dopamine function in schizophrenia and depression: a post-mortem and positron emission tomographic imaging study. Brain. 2013b;136(Pt 11):3242–51.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Williams MR, Galvin K, O'Sullivan B, MacDonald CD, Ching EW, Turkheimer F, Howes OD, Pearce RK, Hirsch SR, Maier M. Neuropathological changes in the substantia nigra in schizophrenia but not depression. Eur Arch Psychiatry Clin Neurosci. 2014;264(4):285–96.

    Article  CAS  PubMed  Google Scholar 

  14. Buchsbaum MS, Shihabuddin L, Brickman AM, Miozzo R, Prikryl R, Shaw R, Davis K. Caudate and putamen volumes in good and poor outcome patients with schizophrenia. Schizophr Res. 2003;64(1):53–62.

    Article  PubMed  Google Scholar 

  15. Mamah D, Wang L, Barch D, de Erausquin GA, Gado M, Csernansky JG. Structural analysis of the basal ganglia in schizophrenia. Schizophr Res. 2007;89(1–3):59–71.

    Article  PubMed  Google Scholar 

  16. Ebdrup BH, Glenthoj B, Rasmussen H, Aggernaes B, Langkilde AR, Paulson OB, Lublin H, Skimminge A, Baare W. Hippocampal and caudate volume reductions in antipsychotic-naive first-episode schizophrenia. J Psychiatry Neurosci. 2010;35(2):95–104.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ho BC, Andreasen NC, Ziebell S, Pierson R, Magnotta V. Long-term antipsychotic treatment and brain volumes: a longitudinal study of first-episode schizophrenia. Arch Gen Psychiatry. 2011;68(2):128–37.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kim IH, Rossi MA, Aryal DK, Racz B, Kim N, Uezu A, Wang F, Wetsel WC, Weinberg RJ, Yin H, Soderling SH. Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine. Nat Neurosci. 2015;18(6):883–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chakos MH, Lieberman JA, Bilder RM, Borenstein M, Lerner G, Bogerts B, Wu H, Kinon B, Ashtari M. Increase in caudate nuclei volumes of first-episode schizophrenic patients taking antipsychotic drugs. Am J Psychiatry. 1994;151(10):1430–6.

    Article  CAS  PubMed  Google Scholar 

  20. Hokama H, Shenton ME, Nestor PG, Kikinis R, Levitt JJ, Metcalf D, Wible CG, O'Donnell BF, Jolesz FA, McCarley RW. Caudate, putamen, and globus pallidus volume in schizophrenia: a quantitative MRI study. Psychiatry Res. 1995;61(4):209–29.

    Article  CAS  PubMed  Google Scholar 

  21. Kung L, Conley R, Chute DJ, Smialek J, Roberts RC. Synaptic changes in the striatum of schizophrenic cases: a controlled postmortem ultrastructural study. Synapse. 1998a;28(2):125–39.

    Article  CAS  PubMed  Google Scholar 

  22. Kung L, Force M, Chute DJ, Roberts RC. Immunocytochemical localization of tyrosine hydroxylase in the human striatum: a postmortem ultrastructural study. J Comp Neurol. 1998b;390(1):52–62.

    Article  CAS  PubMed  Google Scholar 

  23. Rajarethinam R, Upadhyaya A, Tsou P, Upadhyaya M, Keshavan MS. Caudate volume in offspring of patients with schizophrenia. Br J Psychiatry. 2007;191:258–9.

    Article  PubMed  Google Scholar 

  24. Lawrie SM, Whalley HC, Abukmeil SS, Kestelman JN, Donnelly L, Miller P, Best JJ, Owens DG, Johnstone EC. Brain structure, genetic liability, and psychotic symptoms in subjects at high risk of developing schizophrenia. Biol Psychiatry. 2001;49(10):811–23.

    Article  CAS  PubMed  Google Scholar 

  25. Keshavan MS, Diwadkar VA, Montrose DM, Rajarethinam R, Sweeney JA. Premorbid indicators and risk for schizophrenia: a selective review and update. Schizophr Res. 2005;79(1):45–57.

    Article  PubMed  Google Scholar 

  26. Glahn DC, Laird AR, Ellison-Wright I, Thelen SM, Robinson JL, Lancaster JL, Bullmore E, Fox PT. Meta-analysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis. Biol Psychiatry. 2008;64(9):774–81.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ebdrup BH, Skimminge A, Rasmussen H, Aggernaes B, Oranje B, Lublin H, Baare W, Glenthoj B. Progressive striatal and hippocampal volume loss in initially antipsychotic-naive, first-episode schizophrenia patients treated with quetiapine: relationship to dose and symptoms. Int J Neuropsychopharmacol. 2011;14(1):69–82.

    Article  CAS  PubMed  Google Scholar 

  28. Glenthoj A, Glenthoj BY, Mackeprang T, Pagsberg AK, Hemmingsen RP, Jernigan TL, Baare WF. Basal ganglia volumes in drug-naive first-episode schizophrenia patients before and after short-term treatment with either a typical or an atypical antipsychotic drug. Psychiatry Res. 2007;154(3):199–208.

    Article  CAS  PubMed  Google Scholar 

  29. Ellison-Wright I, Glahn DC, Laird AR, Thelen SM, Bullmore E. The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis. Am J Psychiatry. 2008;165(8):1015–23.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Beckmann H, Lauer M. The human striatum in schizophrenia. II. Increased number of striatal neurons in schizophrenics. Psychiatry Res. 1997;68(2–3):99–109.

    Article  CAS  PubMed  Google Scholar 

  31. Kreczmanski P, Heinsen H, Mantua V, Woltersdorf F, Masson T, Ulfig N, Schmidt-Kastner R, Korr H, Steinbusch HW, Hof PR, Schmitz C. Volume, neuron density and total neuron number in five subcortical regions in schizophrenia. Brain. 2007;130(Pt 3):678–92.

    Article  PubMed  Google Scholar 

  32. Gaebel W. Schizophrenia: current science and clinical practice. Chichester, West Sussex: Wiley-Blackwell; 2011.

    Book  Google Scholar 

  33. von Bartheld C. Counting particles in tissue sections: choices of methods and importance of calibration to minimize biases. Histol Histopathol. 2002;17(2):639–48.

    Google Scholar 

  34. Uranova NA, Kolomeets NS, Vikhreva OV, Zimina IS, Rachmanova VI, Orlovskaya DD. Ultrastructural pathology of myelinated fibers in schizophrenia. Zh Nevrol Psikhiatr Im S S Korsakova. 2013;113(9):63–9.

    CAS  PubMed  Google Scholar 

  35. Roberts RC. Postmortem studies on mitochondria in schizophrenia. Schizophr Res. 2017;187:17–25.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Purves D, Augustine GJ, Fitzpatrick D et al. Neuroscience. 2nd edition. Sunderland (MA): Sinauer Associates; 2001.

    Google Scholar 

  37. Shepherd GM. Corticostriatal connectivity and its role in disease. Nat Rev Neurosci. 2013;14:278–91.

    Google Scholar 

  38. Ferre S, Lluís C, Justinova Z, Quiroz C, Orru M, Navarro G, Canela EI, Franco R, Goldberg SR. Adenosine-cannabinoid receptor interactions. Implications for striatal function. Br. J. Pharmacol. 2010;160:443–53.

    Google Scholar 

  39. Betarbet, R, Turner R, Chockkan V, DeLong MR, Allers KA, Walters J, Levey AI, Greenamyre JT. Dopaminergic neurons intrinsic to the primate striatum. J Neurosci. 1997;17:6761–68.

    Google Scholar 

  40. Hall H, Sedvall G, Magnusson O, Kopp J, Halldin C, Farde L. Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacology. 1994;11:245–56.

    Google Scholar 

  41. Hurd YL, Suzuki M, Sedvall GC. D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J Chem Neuroanat. 2001;22:127–37.

    Google Scholar 

  42. Meador-Woodruff JH, Damask SP, Wang J, Haroutunian V, Davis KL, Watson SJ. Dopamine receptor mRNA expression in human striatum and neocortex. Neuropsychopharmacol. 1996;15:17–29.

    Google Scholar 

  43. De Keyser J, Dierckx R, Vanderheyden P, Ebinger G, Vauquelin G. D1 dopamine receptors in human putamen, frontal cortex and calf retina: differences in guanine nucleotide regulation of agonist binding and adenylate cyclase stimulation. Brain Res. 1988;443:77–84.

    Google Scholar 

  44. Cortés R, Gueye B, Pazos A, Probst A, Palacios JM. Dopamine receptors in human brain: Autoradiographic distribution of D1 sites. Neuroscience. 1989;28:263–73.

    Google Scholar 

  45. Camps M, Cortés R, Gueye B, Probst A, Palacios JM. Dopamine receptors in human brain: autoradiographic distribution of D2 sites. Neuroscience. 1989;28:275–90.

    Google Scholar 

  46. Khan ZU, Gutiérrez A, Martiń R, Peñafiel A, Rivera A, De La Calle A. Differential regional and cellular distribution of dopamine D2-like receptors: an immunocytochemical study of subtype-specific antibodies in rat and human brain. J Comp Neurol. 1998;402:353–71.

    Google Scholar 

  47. Murray AM, Ryoo HL, Gurevich E, Joyce JN. Localization of dopamine D3 receptors to mesolimbic and D2 receptors to mesostriatal regions of human forebrain. Proc Natl Acad Sci USA. 1994;91:11271–75.

    Google Scholar 

  48. Kreitzer AC. Physiology and pharmacology of striatal neurons. Annu Rev Neurosci. 2009;32:127–47.

    Google Scholar 

  49. Gerfen CR, Engber TM, Mahan LC, Mahan LC, Susel Z, Chase TN, Monsma FJ, Sibley DR. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science. 1990;250:1429–32.

    Google Scholar 

  50. Civelli O, Bunzow JR, Grandy DK, Zhou QY, Van Tol HH. Molecular biology of the dopamine receptors. Eur J Pharmacol. 1991;207:277–86.

    Google Scholar 

  51. Andersson C, Hamer RM, Lawler CP, Mailman RB, Lieberman JA. Striatal volume changes in the rat following long-term administration of typical and atypical antipsychotic drugs. Neuropsychopharmacol. 2002;27:143–51.

    Google Scholar 

  52. Dazzan P1, Morgan KD, Orr K, Hutchinson G, Chitnis X, Suckling J, Fearon P, McGuire PK, Mallett RM, Jones PB, Leff J, Murray RM. Different effects of typical and atypical antipsychotics on grey matter in first episode psychosis: the AESOP study. Neuropsychopharmacol. 2005;30:765–74.

    Google Scholar 

  53. Chemerinski E1, Byne W, Kolaitis JC, Glanton CF, Canfield EL, Newmark RE, Haznedar MM, Novakovic V, Chu KW, Siever LJ, Hazlett EA. Larger putamen size in antipsychotic-naïve individuals with schizotypal personality disorder. Schizophr Res. 2013;143:158–64.

    Google Scholar 

  54. Farid F, Mahadun P. Schizophrenia-like psychosis following left putamen infarct: a case report. J Med Case Reports. 2009;3:7337.

    Google Scholar 

  55. Li Y, Kolb B, Robinson TE. The location of persistent amphetamine-induced changes in the density of dendritic spines on medium spiny neurons in the nucleus accumbens and caudate-putamen. Neuropsychopharmacol. 2003;28:1082–85.

    Google Scholar 

  56. Grazioplene RG, Bearden CE, Subotnik KL, Ventura J, Haut K, Nuechterlein KH, Cannon TD. Connectivity-enhanced diffusion analysis reveals white matter density disruptions in first episode and chronic schizophrenia. Neuroimage Clin. 2018;18:608–16.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Holleran L, Ahmed M, Anderson-Schmidt H, McFarland J, Emsell L, Leemans A, Scanlon C, Dockery P, McCarthy P, Barker GJ, McDonald C, Cannon DM. Altered interhemispheric and temporal lobe white matter microstructural organization in severe chronic schizophrenia. Neuropsychopharmacology. 2014;39(4):944–54.

    Article  PubMed  Google Scholar 

  58. Ublinskii MV, Semenova NA, Lukovkina OV, Sidorin SV, Lebedeva IS, Kaleda VG, Barkhatova AN, Akhadov TA. Characteristics of diffusion in the corticospinal tract of patients with early stage of schizophrenia: diffusion tensor magnetic resonance imaging. Bull Exp Biol Med. 2015;159(1):29–31.

    Article  CAS  PubMed  Google Scholar 

  59. Ho NF, Li Z, Ji F, Wang M, Kuswanto CN, Sum MY, Tng HY, Sitoh YY, Sim K, Zhou J. Hemispheric lateralization abnormalities of the white matter microstructure in patients with schizophrenia and bipolar disorder. J Psychiatry Neurosci. 2017;42(4):242–51.

    Google Scholar 

  60. Meng L, Li K, Li W, Xiao Y, Lui S, Sweeney JA, Gong Q. Widespread white-matter microstructure integrity reduction in first-episode schizophrenia patients after acute antipsychotic treatment. Schizophr Res. 2018.

    Google Scholar 

  61. Levitt JJ, Kubicki M, Nestor PG, Ersner-Hershfield H, Westin CF, Alvarado JL, Kikinis R, Jolesz FA, McCarley RW, Shenton ME. A diffusion tensor imaging study of the anterior limb of the internal capsule in schizophrenia. Psychiatry Res. 2010;184(3):143–50.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ellison-Wright I, Nathan PJ, Bullmore ET, Zaman R, Dudas RB, Agius M, Fernandez-Egea E, Müller U, Dodds CM, Forde NJ, Scanlon C, Leemans A, McDonald C, Cannon DM. Distribution of tract deficits in schizophrenia. BMC Psychiatry. 2014;14:99.

    Google Scholar 

  63. Mitelman SA, Brickman AM, Shihabuddin L, Newmark RE, Hazlett EA, Haznedar MM, Buchsbaum MS. A comprehensive assessment of gray and white matter volumes and their relationship to outcome and severity in schizophrenia. NeuroImage. 2007a;37(2):449–62.

    Article  PubMed  Google Scholar 

  64. Mitelman SA, Torosjan Y, Newmark RE, Schneiderman JS, Chu KW, Brickman AM, Haznedar MM, Hazlett EA, Tang CY, Shihabuddin L, Buchsbaum MS. Internal capsule, corpus callosum and long associative fibers in good and poor outcome schizophrenia: a diffusion tensor imaging survey. Schizophr Res. 2007b;92(1–3):211–24.

    Article  PubMed  Google Scholar 

  65. Suzuki M, Nohara S, Hagino H, Kurokawa K, Yotsutsuji T, Kawasaki Y, Takahashi T, Matsui M, Watanabe N, Seto H, Kurachi M. Regional changes in brain gray and white matter in patients with schizophrenia demonstrated with voxel-based analysis of MRI. Schizophr Res. 2002;55(1–2):41–54.

    Article  PubMed  Google Scholar 

  66. Goghari VM, Lang DJ, Khorram B, Götz J, Vandorpe RA, Smith GN, Kopala LC, Barr AM, Honer WG. Anterior internal capsule volumes increase in patients with schizophrenia switched from typical antipsychotics to olanzapine. J Psychopharmacol. 2011;25(5):621–9.

    Article  CAS  PubMed  Google Scholar 

  67. Hulshoff Pol HE, Schnack HG, Mandl RC, Cahn W, Collins DL, Evans AC, Kahn RS. Focal white matter density changes in schizophrenia: reduced inter-hemispheric connectivity. NeuroImage. 2004;21(1):27–35.

    Article  PubMed  Google Scholar 

  68. Lang DJ, Khorram B, Goghari VM, Kopala LC, Vandorpe RA, Rui Q, Smith GN, Honer WG. Reduced anterior internal capsule and thalamic volumes in first-episode psychosis. Schizophr Res. 2006;87(1–3):89–99.

    Article  CAS  PubMed  Google Scholar 

  69. Suzuki M, Zhou SY, Hagino H, Takahashi T, Kawasaki Y, Nohara S, Yamashita I, Matsui M, Seto H, Kurachi M. Volume reduction of the right anterior limb of the internal capsule in patients with schizotypal disorder. Psychiatry Res. 2004;130(3):213–25.

    Article  PubMed  Google Scholar 

  70. Brickman AM, Buchsbaum MS, Ivanov Z, Borod JC, Foldi NS, Hahn E, Mitelman SA, Hazlett EA, Lincoln SJ, Newmark RE, Shihabuddin L. Internal capsule size in good-outcome and poor-outcome schizophrenia. J Neuropsychiatry Clin Neurosci. 2006;18(3):364–76.

    Article  PubMed  Google Scholar 

  71. Mega MS, Cummings JL. Frontal-subcortical circuits and neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci. 1994;6(4):358–70.

    Article  CAS  PubMed  Google Scholar 

  72. Barley K, Dracheva S, Byne W. Subcortical oligodendrocyte- and astrocyte-associated gene expression in subjects with schizophrenia, major depression and bipolar disorder. Schizophr Res. 2009;112(1–3):54–64.

    Article  PubMed  Google Scholar 

  73. Perez-Costas E, Melendez-Ferro M, Roberts RC. Basal ganglia pathology in schizophrenia: dopamine connections and anomalies. J Neurochem. 2010;113(2):287–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Csernansky JG, Cronenwett WJ. Neural networks in schizophrenia. Am J Psychiatry. 2008;165(8):937–9.

    Article  PubMed  Google Scholar 

  75. Williams M. An introduction to the nucleus Accumbens in schizophrenia. Oruen. 2017;2:29–31.

    Google Scholar 

  76. Hong S, Hikosaka O. The globus pallidus sends reward-related signals to the lateral habenula. Neuron. 2008;60(4):720–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Miller JM, Vorel SR, Tranguch AJ, Kenny ET, Mazzoni P, van Gorp WG, Kleber HD. Anhedonia after a selective bilateral lesion of the globus pallidus. Am J Psychiatry. 2006;163(5):786–8.

    Article  PubMed  Google Scholar 

  78. Hutcheson NL, Clark DG, Bolding MS, White DM, Lahti AC. Basal ganglia volume in unmedicated patients with schizophrenia is associated with treatment response to antipsychotic medication. Psychiatry Res. 2014;221(1):6–12.

    Article  PubMed  Google Scholar 

  79. Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res. 2001;49(1–2):1–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Womer FY, Wang L, Alpert KI, Smith MJ, Csernansky JG, Barch DM, Mamah D. Basal ganglia and thalamic morphology in schizophrenia and bipolar disorder. Psychiatry Res. 2014;223(2):75–83.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mwansisya TE, Wang Z, Tao H, Zhang H, Hu A, Guo S, Liu Z. The diminished interhemispheric connectivity correlates with negative symptoms and cognitive impairment in first-episode schizophrenia. Schizophr Res. 2013;150(1):144–50.

    Article  PubMed  Google Scholar 

  82. Bogerts B, Meertz E, Schonfeldt-Bausch R. Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage. Arch Gen Psychiatry. 1985;42(8):784–91.

    Article  CAS  PubMed  Google Scholar 

  83. Casanova MF, Prasad CM, Waldman I, Illowsky B, Stein B, Weinberger DR, Kleinman JB. No difference in basal ganglia mineralization between schizophrenic and nonschizophrenic patients: a quantitative computerized tomographic study. Biol Psychiatry. 1990a;27(2):138–42.

    Article  CAS  PubMed  Google Scholar 

  84. Casanova MF, Waldman IN, Kleinman JE. A postmortem quantitative study of iron in the globus pallidus of schizophrenic patients. Biol Psychiatry. 1990b;27(2):143–9.

    Article  CAS  PubMed  Google Scholar 

  85. Stevens JR. Neuropathology of schizophrenia. Arch Gen Psychiatry. 1982;39(10):1131–9.

    Article  CAS  PubMed  Google Scholar 

  86. O'Connor WT. Functional neuroanatomy of the ventral striopallidal GABA pathway. New sites of intervention in the treatment of schizophrenia. J Neurosci Methods. 2001;109(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  87. Suridjan I, Rusjan P, Addington J, Wilson AA, Houle S, Mizrahi R. Dopamine D2 and D3 binding in people at clinical high risk for schizophrenia, antipsychotic-naive patients and healthy controls while performing a cognitive task. J Psychiatry Neurosci. 2013;38(2):98–106.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Dougherty MK, Gu H, Bizzell J, Ramsey S, Gerig G, Perkins DO, Belger A. Differences in subcortical structures in young adolescents at familial risk for schizophrenia: a preliminary study. Psychiatry Res. 2012;204(2–3):68–74.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Oertel-Knöchel V, Knöchel C, Matura S, Rotarska-Jagiela A, Magerkurth J, Prvulovic D, Haenschel C, Hampel H, Linden DE. Cortical-basal ganglia imbalance in schizophrenia patients and unaffected first-degree relatives. Schizophr Res. 2012;138(2–3):120–7.

    Article  PubMed  Google Scholar 

  90. Pontierri FE, Tanda C, Di Chiara G. Intravenous cocaine, morphine and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proc Nat Acad Sci USA. 1995;92:12304–8.

    Google Scholar 

  91. Pierce RC, Kalivas PS. Amphetamine produces sensitised increases in locomotion and extracellular dopamine preferentially in the nucleus accumbens shell of rats administered repeated cocaine. J Parmacol Expl Ther. 1995;275:1019–29.

    Google Scholar 

  92. Yager LM, Garcia AF, Wunsch AM, Ferguson SM. The ins and outs of the striatum: role in drug addiction. Neuroscience. 2015;301:529–41.

    Google Scholar 

  93. Zaborsky L, Alheid GF, Beinfield MC et al. Cholecytokinin innervation of the ventral striatum: a morphological and radioimmunological study. Neuroscience. 1985;42:427–53.

    Google Scholar 

  94. Groenewegen HJ, Meredith GE, Berendse HW et al. The compartmental organisation of the ventral striatum in the rat, in neural mechanisms in disorders of movement, edited by Crossman AR, Sambrook MA, London, John Libbey. 1989;45–54.

    Google Scholar 

  95. Criscitelli K, Avena NM. The neurobiological and behavioral overlaps of nicotine and food addiction. Prev Med. 1992;92:82–9.

    Google Scholar 

  96. Cador M, Robbins TW, Everitt BJ. Involvement of the amygdala in stimulus-reward associations: interaction with the ventral striatum. Neuroscience. 1989;30:77–86.

    Google Scholar 

  97. Jackson ME, Moghaddam J. Amygdala regulation of nucleus accumbens dopamine output is governed by the prefrontal cortex. J Neurosci. 2001;21:676–81.

    Google Scholar 

  98. Floresco SB, Todd CL, Grace AA. Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci. 2001;21:4915–22.

    Google Scholar 

  99. Bagot RC, Parise EM, Peña CJ, Zhang HX, Maze I, Chaudhury D, Persaud B, Cachope R, Bolaños-Guzmán CA, Cheer JF, Deisseroth K, Han MH, Nestler EJ. Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat Commun. 2015;6:7062. https://doi.org/10.1038/ncomms8062.

  100. Groenewegen HJ, Vermeulen-Van der Zee E, te Kortschot A. Organisation of the projections from the sibiculum to the striatum in the rat: a study using anterograde transport of Phaseolus vulgarisleucoagglutinin. Neuroscience. 1987;23:103–20.

    Google Scholar 

  101. Lauer M, Senitz D, Beckmann H. Increased volume of the nucleus accumbens in schizophrenia. J Neural Transm (Vienna). 2001;108(6):645–60.

    Article  CAS  Google Scholar 

  102. Pakkenberg B. Pronounced reduction of total neuron number in mediodorsal thalamic nucleus and nucleus accumbens in schizophrenics. Arch Gen Psychiatry. 1990;47(11):1023–8.

    Article  CAS  PubMed  Google Scholar 

  103. Lesch A, Bogerts B. The diencephalon in schizophrenia: evidence for reduced thickness of the periventricular grey matter. Eur Arch Psychiatry Neurol Sci. 1984;234(4):212–9.

    Article  CAS  PubMed  Google Scholar 

  104. Ballmaier M, Schlagenhauf F, Toga AW, Gallinat J, Koslowski M, Zoli M, Hojatkashani C, Narr KL, Heinz A. Regional patterns and clinical correlates of basal ganglia morphology in non-medicated schizophrenia. Schizophr Res. 2008;106(2–3):140–7.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Gunduz H, Wu H, Ashtari M, Bogerts B, Crandall D, Robinson DG, Alvir J, Lieberman J, Kane J, Bilder R. Basal ganglia volumes in first-episode schizophrenia and healthy comparison subjects. Biol Psychiatry. 2002;51(10):801–8.

    Article  PubMed  Google Scholar 

  106. Rimol LM, Hartberg CB, Nesvag R, Fennema-Notestine C, Hagler DJ Jr, Pung CJ, Jennings RG, Haukvik UK, Lange E, Nakstad PH, Melle I, Andreassen OA, Dale AM, Agartz I. Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder. Biol Psychiatry. 2010;68(1):41–50.

    Article  PubMed  Google Scholar 

  107. Haber SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat. 2003;26(4):317–30.

    Article  PubMed  Google Scholar 

  108. Deutch AY, Lee MC, Iadarola MJ. Regionally specific effects of atypical antipsychotic drugs on striatal Fos expression: the nucleus accumbens shell as a locus of antipsychotic action. Mol Cell Neurosci. 1992;3(4):332–41.

    Article  CAS  PubMed  Google Scholar 

  109. Goldstein M, Deutch AY. Dopaminergic mechanisms in the pathogenesis of schizophrenia. FASEB J. 1992;6(7):2413–21.

    Article  CAS  PubMed  Google Scholar 

  110. Merchant KM, Dorsa DM. Differential induction of neurotensin and c-fos gene expression by typical versus atypical antipsychotics. Proc Natl Acad Sci U S A. 1993;90(8):3447–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bird ED, Spokes EG, Iversen LL. Brain norepinephrine and dopamine in schizophrenia. Science. 1979a;204(4388):93–4.

    Article  CAS  PubMed  Google Scholar 

  112. Bird ED, Spokes EG, Iversen LL. Increased dopamine concentration in limbic areas of brain from patients dying with schizophrenia. Brain. 1979b;102(2):347–60.

    Article  CAS  PubMed  Google Scholar 

  113. Mackay AV, Iversen LL, Rossor M, Spokes E, Bird E, Arregui A, Creese I, Synder SH. Increased brain dopamine and dopamine receptors in schizophrenia. Arch Gen Psychiatry. 1982;39(9):991–7.

    Article  CAS  PubMed  Google Scholar 

  114. Owen F, Cross AJ, Crow TJ, Longden A, Poulter M, Riley GJ. Increased dopamine-receptor sensitivity in schizophrenia. Lancet. 1978;2(8083):223–6.

    Article  CAS  PubMed  Google Scholar 

  115. Owens DG. Dopamine and schizophrenia. Nurs Mirror. 1978;146(5):23–6.

    CAS  PubMed  Google Scholar 

  116. Crow TJ, Johnstone EC, Longden A, Owen F. Dopamine and schizophrenia. Adv Biochem Psychopharmacol. 1978;19:301–9.

    CAS  PubMed  Google Scholar 

  117. Farley IJ, Price KS, Hornykiewicz O. Dopamine in the limbic regions of the human brain: normal and abnormal. Adv Biochem Psychopharmacol. 1977;16:57–64.

    CAS  PubMed  Google Scholar 

  118. Hetey L, Schwitzkowsky R, Ott T, Barz H. Diminished synaptosomal dopamine (DA) release and DA autoreceptor supersensitivity in schizophrenia. J Neural Transm Gen Sect. 1991;83(1–2):25–35.

    Article  CAS  PubMed  Google Scholar 

  119. McCollum LA, Walker CK, Roche JK, Roberts RC. Elevated excitatory input to the nucleus accumbens in schizophrenia: a postmortem Ultrastructural study. Schizophr Bull. 2015;41(5):1123–32.

    Article  PubMed  PubMed Central  Google Scholar 

  120. White TP, Wigton R, Joyce DW, Collier T, Fornito A, Shergill SS. Dysfunctional striatal systems in treatment-resistant schizophrenia. Neuropsychopharmacology. 2015. https://doi.org/10.1038/npp.2015.277.

  121. Bustos G, Abarca J, Campusano J, Bustos V, Noriega V, Aliaga E. Functional interactions between somatodendritic dopamine release, glutamate receptors and brain-derived neurotrophic factor expression in mesencephalic structures of the brain. Brain Res Brain Res Rev. 2004;47(1–3):126–44.

    Article  CAS  PubMed  Google Scholar 

  122. Guatteo E, Cucchiaroni ML, Mercuri NB. Substantia nigra control of basal ganglia nuclei. J Neural Transm Suppl 2009;(73):91–101.

    Google Scholar 

  123. Lee CR, Tepper JM. Basal ganglia control of substantia nigra dopaminergic neurons. J Neural Transm Suppl 2009;(73):71–90.

    Google Scholar 

  124. Tepper JM, Lee CR. GABAergic control of substantia nigra dopaminergic neurons. Prog Brain Res. 2007;160:189–208.

    Article  CAS  PubMed  Google Scholar 

  125. Hajós M, Greenfield SA. Synaptic connections between pars compacta and pars reticulata neurones: electrophysiological evidence for functional modules within the substantia nigra. Brain Res. 1994;660(2):216–24.

    Article  PubMed  Google Scholar 

  126. Woods SW. Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry. 2003;64(6):663–7.

    Article  CAS  PubMed  Google Scholar 

  127. Creese I, Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science. 1976;192(4238):481–3.

    Article  CAS  PubMed  Google Scholar 

  128. Jarskog LF, Miyamoto S, Lieberman JA. Schizophrenia: new pathological insights and therapies. Annu Rev Med. 2007;58:49–61.

    Article  CAS  PubMed  Google Scholar 

  129. Miyamoto S, Duncan GE, Marx CE, Lieberman JA. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatry. 2005;10(1):79–104.

    Article  CAS  PubMed  Google Scholar 

  130. Geddes J, Freemantle N, Harrison P, Bebbington P. Atypical antipsychotics in the treatment of schizophrenia: systematic overview and meta-regression analysis. BMJ. 2000;321(7273):1371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Leucht S, Pitschel-Walz G, Abraham D, Kissling W. Efficacy and extrapyramidal side-effects of the new antipsychotics olanzapine, quetiapine, risperidone, and sertindole compared to conventional antipsychotics and placebo. A meta-analysis of randomized controlled trials. Schizophr Res. 1999;35(1):51–68.

    Article  CAS  PubMed  Google Scholar 

  132. Buchanan RW, Gold JM. Negative symptoms: diagnosis, treatment and prognosis. Int Clin Psychopharmacol. 1996;11(Suppl 2):3–11.

    Article  PubMed  Google Scholar 

  133. Keefe RS, Bilder RM, Harvey PD, Davis SM, Palmer BW, Gold JM, Meltzer HY, Green MF, Miller DD, Canive JM, Adler LW, Manschreck TC, Swartz M, Rosenheck R, Perkins DO, Walker TM, Stroup TS, McEvoy JP, Lieberman JA. Baseline neurocognitive deficits in the CATIE schizophrenia trial. Neuropsychopharmacology. 2006;31(9):2033–46.

    Article  PubMed  Google Scholar 

  134. Keefe RS, Bilder RM, Davis SM, Harvey PD, Palmer BW, Gold JM, Meltzer HY, Green MF, Capuano G, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Davis CE, Hsiao JK, Lieberman JA, CATIE Investigators, Neurocognitive Working Group. Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE trial. Arch Gen Psychiatry. 2007;64(6):633–47.

    Article  CAS  PubMed  Google Scholar 

  135. Keefe RS, Silva SG, Perkins DO, Lieberman JA. The effects of atypical antipsychotic drugs on neurocognitive impairment in schizophrenia: a review and meta-analysis. Schizophr Bull. 1999;25(2):201–22.

    Article  CAS  PubMed  Google Scholar 

  136. Meltzer HY, McGurk SR. The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr Bull. 1999;25(2):233–55.

    Article  CAS  PubMed  Google Scholar 

  137. Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr Bull. 2009;35(3):549–62.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Meisenzahl EM, Schmitt GJ, Scheuerecker J, Möller HJ. The role of dopamine for the pathophysiology of schizophrenia. Int Rev Psychiatry. 2007;19(4):337–45.

    Article  CAS  PubMed  Google Scholar 

  139. Demjaha A, Murray RM, McGuire PK, Kapur S, Howes OD. Dopamine synthesis capacity in patients with treatment-resistant schizophrenia. Am J Psychiatry. 2012;169(11):1203–10.

    Article  PubMed  Google Scholar 

  140. Mizrahi R, Agid O, Borlido C, Suridjan I, Rusjan P, Houle S, Remington G, Wilson AA, Kapur S. Effects of antipsychotics on D3 receptors: a clinical PET study in first episode antipsychotic naive patients with schizophrenia using [11C]-(+)-PHNO. Schizophr Res. 2011;131(1–3):63–8.

    Article  PubMed  Google Scholar 

  141. Egerton A, Chaddock CA, Winton-Brown TT, Bloomfield MA, Bhattacharyya S, Allen P, McGuire PK, Howes OD. Presynaptic striatal dopamine dysfunction in people at ultra-high risk for psychosis: findings in a second cohort. Biol Psychiatry. 2013;74(2):106–12.

    Article  CAS  PubMed  Google Scholar 

  142. Martinot M, Bragulat V, Artiges E, Dollé F, Hinnen F, Jouvent R, Martinot J. Decreased presynaptic dopamine function in the left caudate of depressed patients with affective flattening and psychomotor retardation. Am J Psychiatry. 2001;158(2):314–6.

    Article  CAS  PubMed  Google Scholar 

  143. Howes OD, Montgomery AJ, Asselin MC, Murray RM, Grasby PM, McGuire PK. Molecular imaging studies of the striatal dopaminergic system in psychosis and predictions for the prodromal phase of psychosis. Br J Psychiatry Suppl. 2007;51:s13–8.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Howes OD, Shotbolt P, Bloomfield M, Daalman K, Demjaha A, Diederen KM, Ibrahim K, Kim E, McGuire P, Kahn RS, Sommer IE. Dopaminergic function in the psychosis spectrum: an [18F]-DOPA imaging study in healthy individuals with auditory hallucinations. Schizophr Bull. 2013a;39(4):807–14.

    Google Scholar 

  145. Fernstrom JD, Fernstrom MH. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr. 2007;137(6 Suppl 1):1539S–47S; discussion 1548S

    Article  CAS  PubMed  Google Scholar 

  146. Guindalini C, Laranjeira R, Collier D, Messas G, Vallada H, Breen G. Dopamine-beta hydroxylase polymorphism and cocaine addiction. Behav Brain Funct. 2008;4:1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Gogos JA, Morgan M, Luine V, Santha M, Ogawa S, Pfaff D, Karayiorgou M. Catechol-O-methyltransferase-deficient mice exhibit sexually dimorphic changes in catecholamine levels and behavior. Proc Natl Acad Sci U S A. 1998;95(17):9991–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Perez-Costas E, Melendez-Ferro M, Rice MW, Conley RR, Roberts RC. Dopamine pathology in schizophrenia: analysis of total and phosphorylated tyrosine hydroxylase in the substantia nigra. Front Psych. 2012;3:31.

    CAS  Google Scholar 

  149. Rice OV, Gardner EL, Heidbreder CA, Ashby CR Jr. The acute administration of the selective dopamine D(3) receptor antagonist SB-277011A reverses conditioned place aversion produced by naloxone precipitated withdrawal from acute morphine administration in rats. Synapse. 2012;66(1):85–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williams, M. (2021). The Basal Ganglia. In: Williams, M. (eds) The Neuropathology of Schizophrenia. Springer, Cham. https://doi.org/10.1007/978-3-030-68308-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68308-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68306-1

  • Online ISBN: 978-3-030-68308-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics