Skip to main content

Redox and Inflammatory Signaling, the Unfolded Protein Response, and the Pathogenesis of Pulmonary Hypertension

  • Chapter
  • First Online:
Lung Inflammation in Health and Disease, Volume II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1304))

Abstract

Protein folding overload and oxidative stress disrupt endoplasmic reticulum (ER) homeostasis, generating reactive oxygen species (ROS) and activating the unfolded protein response (UPR). The altered ER redox state induces further ROS production through UPR signaling that balances the cell fates of survival and apoptosis, contributing to pulmonary microvascular inflammation and dysfunction and driving the development of pulmonary hypertension (PH). UPR-induced ROS production through ER calcium release along with NADPH oxidase activity results in endothelial injury and smooth muscle cell (SMC) proliferation. ROS and calcium signaling also promote endothelial nitric oxide (NO) synthase (eNOS) uncoupling, decreasing NO production and increasing vascular resistance through persistent vasoconstriction and SMC proliferation. C/EBP-homologous protein further inhibits eNOS, interfering with endothelial function. UPR-induced NF-κB activity regulates inflammatory processes in lung tissue and contributes to pulmonary vascular remodeling. Conversely, UPR-activated nuclear factor erythroid 2-related factor 2-mediated antioxidant signaling through heme oxygenase 1 attenuates inflammatory cytokine levels and protects against vascular SMC proliferation. A mutation in the bone morphogenic protein type 2 receptor (BMPR2) gene causes misfolded BMPR2 protein accumulation in the ER, implicating the UPR in familial pulmonary arterial hypertension pathogenesis. Altogether, there is substantial evidence that redox and inflammatory signaling associated with UPR activation is critical in PH pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ang II:

Angiotensin II

AP-1:

Activator protein 1

APx:

Ascorbate peroxidase

ARE:

Antioxidant response element

ASC:

Apoptosis-associated speck-like protein containing a CARD

ASK1:

Apoptosis signal-regulating kinase 1

ATF:

Activating transcription factor

ATFS-1:

Activating transcription factor associated with stress 1

Bach1:

BTB and CNC homology 1

BAK:

BCL-2 homologous antagonist/killer

BAX:

BCL-2-associated X protein

BBF2H7:

Box B-binding factor 2 human homolog on chromosome 7

BCL-2:

B cell lymphoma 2

BH3:

BCL-2 homology 3

BH4:

Tetrahydrobiopterin

BIM:

BCL-2-interacting mediator of cell death

BiP:

Immunoglobulin binding protein

BMPR2:

Bone morphogenic protein type 2 receptor

BPA:

Bovine pulmonary artery

bZIP:

Basic leucine zipper

C/EBP:

CCAAT/enhancer-binding protein

CaMKII:

Calcium/calmodulin-dependent kinase II

CHOP:

C/EBP-homologous protein

CO:

Carbon monoxide

COMP:

Cartilage oligomeric matrix protein

COPII:

Coat protein II

CRE:

Cyclic AMP response element

DAMP:

Damage-associated molecular pattern

EC:

Endothelial cell

ECM:

Extracellular matrix

eIF2α:

Eukaryotic translation initiation factor 2α

EndMT:

Endothelial-mesenchymal transition

eNOS:

Endothelial nitric oxide synthase

EPC:

Endothelial progenitor cell

ER:

Endoplasmic reticulum

ERAD:

ER-associated degradation

ERK:

Extracellular signal-regulated kinase

ERO1:

ER oxidoreductase 1

ERSE:

ER stress response element

ET-1:

Endothelin-1

FAD:

Flavin adenine dinucleotide

FPAH:

Familial pulmonary arterial hypertension

GADD34:

Growth arrest and DNA damage-inducible 34

GAG:

Glycosaminoglycan

GCLC:

Glutamate-cysteine ligase catalytic subunit

GCN2:

General control nonderepressible 2

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

GPx7/8:

Glutathione peroxidase 7 and 8

GR:

Glutathione reductase

GSH/GSSG:

Glutathione (reduced/oxidized)

GSH1:

γ-glutamylcysteine synthetase

GST:

Glutathione S-transferase

H/R:

Hypoxia/ischemia and reoxygenation

H2O2:

Hydrogen peroxide

HA:

Hyaluronan

HDAC4:

Histone deacetylase 4

HIFα:

Hypoxia-inducible factor α

HIV-PAH:

HIV-induced pulmonary arterial hypertension

HO-1:

Heme oxygenase 1

HOCl:

Hypochlorous acid

HPAEC:

Human pulmonary arterial endothelial cell

HPMEC:

Human pulmonary microvascular endothelial cell

HRE:

Hypoxia response element

HSP47:

Heat shock protein 47

IKK:

Inhibitor of nuclear factor-κB (IκB) kinase

IL:

Interleukin

IP3R:

Inositol 1,4,5-triphosphate receptor

IRE1:

Inositol-requiring protein 1

ISR:

Integrated stress response

IκB:

Inhibitor of nuclear factor-κB

JNK:

JUN N-terminal kinase

KEAP1:

Kelch-like ECH-associated protein 1

LC20:

20-kDa regulatory light chain of myosin II

LPS:

Lipopolysaccharide

MA:

Methamphetamine

Maf:

Musculoaponeurotic fibrosarcoma

MAM:

Mitochondria-associated membrane

MAPK:

Mitogen-activated protein kinase

MCP:

Monocyte chemoattractant protein

MCT:

Monocrotaline

Mdm2:

Mouse double minute 2 homolog

MEF:

Myocyte enhancer factor

MIP:

Macrophage inflammatory protein

MLCK:

Myosin light chain kinase

MMP:

Matrix metalloproteinase

NAD:

Nicotine adenine dinucleotide

NF-Y:

Nuclear transcription factor Y

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NIK:

NF-κB inducing kinase

NLRP3:

Nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein-3

NO:

Nitric oxide

NOX:

NADPH oxidase

NQO1:

NAD(P)H: quinone oxidoreductase 1

NRF2:

Nuclear factor erythroid 2-related factor 2

O2:

Oxygen

OASIS:

Old astrocyte specifically induced substance

PAEC:

Pulmonary arterial endothelial cell

PAH:

Pulmonary arterial hypertension

PAMP:

Pathogen-associated molecular pattern

PASMC:

Pulmonary artery smooth muscle cell

PCNA:

Proliferating cell nuclear antigen

PDI:

Protein disulfide isomerase

PERK:

Protein kinase RNA-like endoplasmic reticulum kinase

PH:

Pulmonary hypertension

PHD:

Proline hydroxylase

PI3K:

Phosphoinositide-3 kinase

PKB:

Protein kinase B

PKC:

Protein kinase C

PP1C:

Protein phosphatase 1C

PRxIV:

Peroxiredoxin IV

PTP:

Permeability transition pore

PUMA:

p53 upregulated modulator of apoptosis

QSOX:

Quiescin sulfhydryl oxidase

RHAMM:

Receptor for HA-mediated motility

RIDD:

Regulated IRE1-dependent decay

ROS:

Reactive oxygen species

RVSP:

Right ventricle systolic pressure

S1P:

Site 1 protease

S2P:

Site 2 protease

SFN:

Sulforaphane

SMC:

Smooth muscle cell

SOD:

Superoxide dismutase

SRXN-1:

Sulfiredoxin-1

Tat:

Trans-activator of transcription

TGFβ:

Transforming growth factor β

TIM:

Translocase of the inner membrane

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor α

TOM:

Translocase of the outer membrane

TRAF:

Tumor necrosis factor receptor-associated factor

Treg:

Regulatory T cell

TRx:

Thioredoxin

TXNIP:

TRx interacting protein

UGT:

UDP glucuronosyl transferase

UPR:

Unfolded protein response

UPRam:

UPR activated by protein mistargeting

UPRmt:

Mitochondrial UPR

UPS:

Ubiquitin-proteasome system

VDCC:

Voltage-dependent calcium channel

VHL:

Von Hippel-Lindau

VKOR:

Vitamin K epoxide reductase

VPO1:

Vascular peroxidase 1

XBP1:

X-box binding protein 1

References

  1. Adler V, Yin Z, Fuchs SY, et al. Regulation of JNK signaling by GSTp. EMBO J. 1999;18(5):1321–34. https://doi.org/10.1093/emboj/18.5.1321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Agarwal S, Sharma H, Chen L, et al. NADPH oxidase mediated endothelial injury in HIV and opioid in duced pulmonary 2 arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2020;318(5):1097. https://doi.org/10.1152/ajplung.00480.2019.

    Article  CAS  Google Scholar 

  3. Alessi DR, Cohen P. Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev. 1998;8(1):55–62. https://doi.org/10.1016/S0959-437X(98)80062-2.

    Article  CAS  PubMed  Google Scholar 

  4. Ali MH, Schlidt SA, Chandel NS, et al. Endothelial permeability and IL-6 production during hypoxia: role of ROS in signal transduction. Am J Physiol Lung Cell Mol Physiol. 1999;277(5):1057. https://doi.org/10.1152/ajplung.1999.277.5.l1057.

    Article  Google Scholar 

  5. Asada R, Kanemoto S, Kondo S, et al. The signalling from endoplasmic reticulum-resident bZIP transcription factors involved in diverse cellular physiology. J Biochem. 2011;149(5):507–18. https://doi.org/10.1093/jb/mvr041.

    Article  CAS  PubMed  Google Scholar 

  6. Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013;20(1):31–42. https://doi.org/10.1038/cdd.2012.81.

    Article  CAS  PubMed  Google Scholar 

  7. Badran M, Abuyassin B, Golbidi S, et al. Uncoupling of vascular nitric oxide synthase caused by intermittent hypoxia. Oxidative Med Cell Longev. 2016;2016:2354870. https://doi.org/10.1155/2016/2354870.

    Article  CAS  Google Scholar 

  8. Baker BM, Nargund AM, Sun T, et al. Protective coupling of mitochondrial function and protein synthesis via the eIF2α kinase GCN-2. PLoS Genet. 2012;8(6):e1002760. https://doi.org/10.1371/journal.pgen.1002760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bánhegyi G, Lusini L, Puskás F, et al. Preferential transport of glutathione versus glutathione disulfide in rat liver microsomal vesicles. J Biol Chem. 1999;274(18):12213–6.

    Article  PubMed  Google Scholar 

  10. Bánhegyi G, Benedetti A, Csala M, et al. Stress on redox. FEBS Lett. 2007;581(19):3634–40. https://doi.org/10.1016/j.febslet.2007.04.028.

    Article  CAS  PubMed  Google Scholar 

  11. Barañano DE, Rao M, Ferris CD, et al. Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci. 2002;99(25):16093–8. https://doi.org/10.1073/pnas.252626999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barman SA, Chen F, Su Y, et al. NADPH oxidase 4 is expressed in pulmonary artery adventitia and contributes to hypertensive vascular remodeling. Arterioscler Thromb Vasc Biol. 2014;34(8):1704–15. https://doi.org/10.1161/ATVBAHA.114.303848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bartoszewska S, Collawn JF. Unfolded protein response (UPR) integrated signaling networks determine cell fate during hypoxia. Cell Mol Biol Lett. 2020;25:18. https://doi.org/10.1186/s11658-020-00212-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bass R, Ruddock LW, Klappa P, et al. A major fraction of endoplasmic reticulum-located glutathione is present as mixed disulfides with protein. J Biol Chem. 2004;279(7):5257–62. https://doi.org/10.1074/jbc.M304951200.

    Article  CAS  PubMed  Google Scholar 

  15. Basset C, Holton J, O’Mahony R, et al. Innate immunity and pathogen-host interaction. Vaccine. 2003;21(Suppl 2):12. https://doi.org/10.1016/S0264-410X(03)00195-6.

    Article  Google Scholar 

  16. Bauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183(2):787–91. https://doi.org/10.4049/jimmunol.0901363.

    Article  CAS  PubMed  Google Scholar 

  17. B’Chir W, Maurin AC, Carraro V, et al. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 2013;41(16):7683–99. https://doi.org/10.1093/nar/gkt563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bertolotti A, Zhang Y, Hendershot LM, et al. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000;2(6):326–32. https://doi.org/10.1038/35014014.

    Article  CAS  PubMed  Google Scholar 

  19. Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nat Rev Cancer. 2008;8(12):967–75. https://doi.org/10.1038/nrc2540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bertout JA, Majmundar AJ, Gordan JD, et al. HIF2α inhibition promotes p53 pathway activity, tumor cell death, and radiation responses. Proc Natl Acad Sci. 2009;106(34):14391–6. https://doi.org/10.1073/pnas.0907357106.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Blais JD, Chin K, Zito E, et al. A small molecule inhibitor of endoplasmic reticulum oxidation 1 (ERO1) with selectively reversible thiol reactivity. J Biol Chem. 2010;285(27):20993–1003. https://doi.org/10.1074/jbc.M110.126599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Braakman I, Bulleid NJ. Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem. 2011;80:71–99. https://doi.org/10.1146/annurev-biochem-062209-093836.

    Article  CAS  PubMed  Google Scholar 

  23. Brush MH, Weiser DC, Shenolikar S. Growth arrest and DNA damage-inducible protein GADD34 targets protein phosphatase 1 alpha to the endoplasmic reticulum and promotes dephosphorylation of the alpha subunit of eukaryotic translation initiation factor 2. Mol Cell Biol. 2003;23(4):1292–303. https://doi.org/10.1128/MCB.23.4.1292-1303.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Budhiraja R, Tuder RM, Hassoun PM. Endothelial dysfunction in pulmonary hypertension. Circulation. 2004;109(2):159–65. https://doi.org/10.1161/01.CIR.0000102381.57477.50.

    Article  PubMed  Google Scholar 

  25. Cahill CM, Rogers JT. Interleukin (IL) 1β induction of IL-6 is mediated by a novel phosphatidylinositol 3-kinase-dependent AKT/IκB kinase α pathway targeting activator protein-1. J Biol Chem. 2008;283(38):25900–12. https://doi.org/10.1074/jbc.M707692200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Camenisch TD, Spicer AP, Brehm-Gibson T, et al. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest. 2000;106(3):349–60. https://doi.org/10.1172/JCI10272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Camenisch TD, Schroeder JA, Bradley J, et al. Heart-valve mesenchyme formation is dependent on hyaluronan-augmented activation of ErbB2-ErbB3 receptors. Nat Med. 2002;8(8):850–5. https://doi.org/10.1038/nm742.

    Article  CAS  PubMed  Google Scholar 

  28. Cao JP, He XY, Xu HT, et al. Autologous transplantation of peripheral blood-derived circulating endothelial progenitor cells attenuates endotoxin-induced acute lung injury in rabbits by direct endothelial repair and indirect immunomodulation. Anesthesiology. 2012;116(6):1278–87. https://doi.org/10.1097/ALN.0b013e3182567f84.

    Article  CAS  PubMed  Google Scholar 

  29. Cao X, He Y, Li X, et al. The IRE1α-XBP1 pathway function in hypoxia-induced pulmonary vascular remodeling, is upregulated by quercetin, inhibits apoptosis and partially reverses the effect of quercetin in PASMCs. Am J Transl Res. 2019;11(2):641–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Carroll B, Otten EG, Manni D, et al. Oxidation of SQSTM1/p62 mediates the link between redox state and protein homeostasis. Nat Commun. 2018;9(1):256. https://doi.org/10.1038/s41467-017-02746-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chacinska A, Koehler CM, Milenkovic D, et al. Importing mitochondrial proteins: machineries and mechanisms. Cell. 2009;138(4):628–44. https://doi.org/10.1016/j.cell.2009.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chakravarthi S, Jessop CE, Willer M, et al. Intracellular catalysis of disulfide bond formation by the human sulfhydryl oxidase, QSOX1. Biochem J. 2007;404(3):403–11. https://doi.org/10.1042/BJ20061510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chamberlain N, Anathy V. Pathological consequences of the unfolded protein response and downstream protein disulphide isomerases in pulmonary viral infection and disease. J Biochem. 2020;167(2):173–84. https://doi.org/10.1093/jb/mvz101.

    Article  CAS  PubMed  Google Scholar 

  34. Chazova I, Loyd JE, Zhdanov VS, et al. Pulmonary artery adventitial changes and venous involvement in primary pulmonary hypertension. Am J Pathol. 1995;146(2):389–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen YF, Oparil S. Endothelin and pulmonary hypertension. J Cardiovasc Pharmacol. 2000;35(4 Suppl 2):49. https://doi.org/10.1097/00005344-200000002-00012.

    Article  Google Scholar 

  36. Chen X, Shen J, Prywes R. The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem. 2002;277(15):13045–52. https://doi.org/10.1074/jbc.M110636200.

    Article  CAS  PubMed  Google Scholar 

  37. Chen X, Iliopoulos D, Zhang Q, et al. XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature. 2014;508(7494):103–7. https://doi.org/10.1038/nature13119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen Y, Yuan T, Zhang H, et al. Activation of Nrf2 attenuates pulmonary vascular remodeling via inhibiting endothelial-to-mesenchymal transition: an insight from a plant polyphenol. Int J Biol Sci. 2017;13(8):1067–81. https://doi.org/10.7150/ijbs.20316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cho S, Lee YH, Park H, et al. Glutathione S-transferase mu modulates the stress-activated signals by suppressing apoptosis signal-regulating kinase 1. J Biol Chem. 2001;276(16):12749–55. https://doi.org/10.1074/jbc.M005561200.

    Article  CAS  PubMed  Google Scholar 

  40. Chou C, Wei L, Kuo M, et al. Up-regulation of interleukin-6 in human ovarian cancer cell via a Gi/PI3K-Akt/NF-κB pathway by lysophosphatidic acid, an ovarian cancer-activating factor. Carcinogenesis. 2005;26(1):45–52. https://doi.org/10.1093/carcin/bgh301.

    Article  CAS  PubMed  Google Scholar 

  41. Chow MT, Duret H, Andrews DM, et al. Type I NKT-cell-mediated TNF-α is a positive regulator of NLRP3 inflammasome priming. Eur J Immunol. 2014;44(7):2111–20. https://doi.org/10.1002/eji.201344329.

    Article  CAS  PubMed  Google Scholar 

  42. Chu Y, Xiangli X, Xiao W. Regulatory T cells protect against hypoxia-induced pulmonary arterial hypertension in mice. Mol Med Rep. 2015;11(4):3181–7. https://doi.org/10.3892/mmr.2014.3106.

    Article  CAS  PubMed  Google Scholar 

  43. Cox JS, Shamu CE, Walter P. Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinase. Cell. 1993;73(6):1197–206. https://doi.org/10.1016/0092-8674(93)90648-a.

    Article  CAS  PubMed  Google Scholar 

  44. Csala M, Szarka A, Margittai É, et al. Role of vitamin E in ascorbate-dependent protein thiol oxidation in rat liver endoplasmic reticulum. Arch Biochem Biophys. 2001;388(1):55–9. https://doi.org/10.1006/abbi.2000.2260.

    Article  CAS  PubMed  Google Scholar 

  45. Cullinan SB, Zhang D, Hannink M, et al. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol Cell Biol. 2003;23(20):7198–209. https://doi.org/10.1128/MCB.23.20.7198-7209.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cuozzo JW, Kaiser CA. Competition between glutathione and protein thiols for disulphide-bond formation. Nat Cell Biol. 1999;1(3):130–5. https://doi.org/10.1038/11047.

    Article  CAS  PubMed  Google Scholar 

  47. Dahle MK, Øverland G, Myhre AE, et al. The phosphatidylinositol 3-kinase/protein kinase B signaling pathway is activated by lipoteichoic acid and plays a role in Kupffer cell production of interleukin-6 (IL-6) and IL-10. Infect Immun. 2004;72(10):5704–11. https://doi.org/10.1128/IAI.72.10.5704-5711.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. De Pascali F, Hemann C, Samons K, et al. Hypoxia and reoxygenation induce endothelial nitric oxide synthase uncoupling in endothelial cells through tetrahydrobiopterin depletion and S-glutathionylation. Biochemistry. 2014;53(22):3679–88. https://doi.org/10.1021/bi500076r.

    Article  CAS  PubMed  Google Scholar 

  49. Delaunay-Moisan A, Ponsero A, Toledano MB. Reexamining the function of glutathione in oxidative protein folding and secretion. Antioxid Redox Signal. 2017;27(15):1178–99. https://doi.org/10.1089/ars.2017.7148.

    Article  CAS  PubMed  Google Scholar 

  50. Delic M, Rebnegger C, Wanka F, et al. Oxidative protein folding and unfolded protein response elicit differing redox regulation in endoplasmic reticulum and cytosol of yeast. Free Radic Biol Med. 2012;52(9):2000–12. https://doi.org/10.1016/j.freeradbiomed.2012.02.048.

    Article  CAS  PubMed  Google Scholar 

  51. Deng J, Lu PD, Zhang Y, et al. Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol. 2004;24(23):10161–8. https://doi.org/10.1128/MCB.24.23.10161-10168.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Deniaud A, Sharaf el Dein O, Maillier E, et al. Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene. 2008;27(3):285–99. https://doi.org/10.1038/sj.onc.1210638.

    Article  CAS  PubMed  Google Scholar 

  53. Dias-Gunasekara S, van Lith M, Williams JAG, et al. Mutations in the FAD binding domain cause stress-induced misoxidation of the endoplasmic reticulum oxidoreductase Ero1β. J Biol Chem. 2006;281(35):25018–25. https://doi.org/10.1074/jbc.M602354200.

    Article  CAS  PubMed  Google Scholar 

  54. Dinarello CA. The IL-1 family and inflammatory diseases. Clin Exp Rheumatol. 2002;20(5 Suppl 27):1.

    Google Scholar 

  55. Dorner AJ, Wasley LC, Raney P, et al. The stress response in Chinese hamster ovary cells. Regulation of ERp72 and protein disulfide isomerase expression and secretion. J Biol Chem. 1990;265(35):22029–34.

    Article  CAS  PubMed  Google Scholar 

  56. Dostert C, Pétrilli V, Van Bruggen R, et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 2008;320(5876):674–7. https://doi.org/10.1126/science.1156995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Eletto D, Chevet E, Argon Y, et al. Redox controls UPR to control redox. J Cell Sci. 2014;127(Pt 17):3649–58. https://doi.org/10.1242/jcs.153643.

    Article  CAS  PubMed  Google Scholar 

  58. Eletto D, Eletto D, Dersh D, et al. Protein disulfide isomerase A6 controls the decay of IRE1α signaling via disulfide-dependent association. Mol Cell. 2014;53(4):562–76. https://doi.org/10.1016/j.molcel.2014.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Erickson JR, Joiner MA, Guan X, et al. A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell. 2008;133(3):462–74. https://doi.org/10.1016/j.cell.2008.02.048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Federti E, Matté A, Ghigo A, et al. Peroxiredoxin-2 plays a pivotal role as multimodal cytoprotector in the early phase of pulmonary hypertension. Free Radic Biol Med. 2017;112:376–86. https://doi.org/10.1016/j.freeradbiomed.2017.08.004.

    Article  CAS  PubMed  Google Scholar 

  61. Fewell SW, Travers KJ, Weissman JS, et al. The action of molecular chaperones in the early secretory pathway. Annu Rev Genet. 2001;35:149–91. https://doi.org/10.1146/annurev.genet.35.102401.090313.

    Article  CAS  PubMed  Google Scholar 

  62. Fiorese CJ, Schulz AM, Lin YF, et al. The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr Biol. 2016;26(15):2037–43. https://doi.org/10.1016/j.cub.2016.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fladmark KE, Brustugun OT, Mellgren G, et al. Ca2+/calmodulin-dependent protein kinase II is required for microcystin-induced apoptosis. J Biol Chem. 2002;277(4):2804–11. https://doi.org/10.1074/jbc.M109049200.

    Article  CAS  PubMed  Google Scholar 

  64. Fleetwood AJ, Lawrence T, Hamilton JA, et al. Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J Immunol. 2007;178(8):5245–52. https://doi.org/10.4049/jimmunol.178.8.5245.

    Article  CAS  PubMed  Google Scholar 

  65. Förstermann U, Münzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113(13):1708–14. https://doi.org/10.1161/CIRCULATIONAHA.105.602532.

    Article  CAS  PubMed  Google Scholar 

  66. Franchi L, Eigenbrod T, Muñoz-Planillo R, et al. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 2009;10(3):241–7. https://doi.org/10.1038/ni.1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Frand AR, Kaiser CA. The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol Cell. 1998;1(2):161–70. https://doi.org/10.1016/S1097-2765(00)80017-9.

    Article  CAS  PubMed  Google Scholar 

  68. Frand AR, Kaiser CA. Ero1p oxidizes protein disulfide isomerase in a pathway for disulfide bond formation in the endoplasmic reticulum. Mol Cell. 1999;4(4):469–77. https://doi.org/10.1016/S1097-2765(00)80198-7.

    Article  CAS  PubMed  Google Scholar 

  69. Fujimoto T, Inaba K, Kadokura H. Methods to identify the substrates of thiol-disulfide oxidoreductases. Protein Sci. 2019;28(1):30–40. https://doi.org/10.1002/pro.3530.

    Article  CAS  PubMed  Google Scholar 

  70. Fulda S. Alternative cell death pathways and cell metabolism. Int J Cell Biol. 2013;2013:463637. https://doi.org/10.1155/2013/463637.

    Article  PubMed  PubMed Central  Google Scholar 

  71. George J, D’Armiento J. Transgenic expression of human matrix metalloproteinase-9 augments monocrotaline-induced pulmonary arterial hypertension in mice. J Hypertens. 2011;29(2):299–308. https://doi.org/10.1097/HJH.0b013e328340a0e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gordan JD, Thompson CB, Simon MC. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell. 2007;12(2):108–13. https://doi.org/10.1016/j.ccr.2007.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Görlach A, Klappa P, Kietzmann T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal. 2006;8(9–10):1391–418. https://doi.org/10.1089/ars.2006.8.1391.

    Article  PubMed  Google Scholar 

  74. Greten FR, Arkan MC, Bollrath J, et al. NF-κB is a negative regulator of IL-1β secretion as revealed by genetic and pharmacological inhibition of IKKβ. Cell. 2007;130(5):918–31. https://doi.org/10.1016/j.cell.2007.07.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hansen HG, Schmidt JD, Søltoft CL, et al. Hyperactivity of the Ero1α oxidase elicits endoplasmic reticulum stress but no broad antioxidant response. J Biol Chem. 2012;287(47):39513–23. https://doi.org/10.1074/jbc.M112.405050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hansen HG, Søltoft CL, Schmidt JD, et al. Biochemical evidence that regulation of Ero1β activity in human cells does not involve the isoform-specific cysteine 262. Biosci Rep. 2014;34(2):e00103. https://doi.org/10.1042/BSR20130124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999;397(6716):271–4. https://doi.org/10.1038/16729.

    Article  CAS  PubMed  Google Scholar 

  78. Harding HP, Novoa I, Zhang Y, et al. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 2000;6(5):1099–108. https://doi.org/10.1016/S1097-2765(00)00108-8.

    Article  CAS  PubMed  Google Scholar 

  79. Harding HP, Zhang Y, Bertolotti A, et al. Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell. 2000;5(5):897–904. https://doi.org/10.1016/S1097-2765(00)80330-5.

    Article  CAS  PubMed  Google Scholar 

  80. Harding HP, Zhang Y, Zeng H, et al. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11(3):619–33. https://doi.org/10.1016/S1097-2765(03)00105-9.

    Article  CAS  PubMed  Google Scholar 

  81. Hayden MS, Ghosh S. Regulation of NF-κB by TNF family cytokines. Semin Immunol. 2014;26(3):253–66. https://doi.org/10.1016/j.smim.2014.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Haynes CM, Titus EA, Cooper AA. Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell. 2004;15(5):767–76. https://doi.org/10.1016/j.molcel.2004.08.025.

    Article  CAS  PubMed  Google Scholar 

  83. Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13(2):89–102. https://doi.org/10.1038/nrm3270.

    Article  CAS  PubMed  Google Scholar 

  84. Hetz C, Martinon F, Rodriguez D, et al. The unfolded protein response: integrating stress signals through the stress sensor IRE1α. Physiol Rev. 2011;91(4):1219–43. https://doi.org/10.1152/physrev.00001.2011.

    Article  CAS  PubMed  Google Scholar 

  85. Higa A, Taouji S, Lhomond S, et al. Endoplasmic reticulum stress-activated transcription factor ATF6α requires the disulfide isomerase PDIA5 to modulate chemoresistance. Mol Cell Biol. 2014;34(10):1839–49. https://doi.org/10.1128/MCB.01484-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Higo T, Hattori M, Nakamura T, et al. Subtype-specific and ER lumenal environment-dependent regulation of inositol 1,4,5-trisphosphate receptor type 1 by ERp44. Cell. 2005;120(1):85–98. https://doi.org/10.1016/j.cell.2004.11.048.

    Article  CAS  PubMed  Google Scholar 

  87. Hoeper MM, Bogaard HJ, Condliffe R, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):42. https://doi.org/10.1016/j.jacc.2013.10.032.

    Article  Google Scholar 

  88. Holland R, Fishbein JC. Chemistry of the cysteine sensors in Kelch-like ECH-associated protein 1. Antioxid Redox Signal. 2010;13(11):1749–61. https://doi.org/10.1089/ars.2010.3273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hollien J, Weissman JS. Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science. 2006;313(5783):104–7. https://doi.org/10.1126/science.1129631.

    Article  CAS  PubMed  Google Scholar 

  90. Hong M, Luo S, Baumeister P, et al. Underglycosylation of ATF6 as a novel sensing mechanism for activation of the unfolded protein response. J Biol Chem. 2004;279(12):11354–63. https://doi.org/10.1074/jbc.M309804200.

    Article  CAS  PubMed  Google Scholar 

  91. Hourihan J, Moronetti Mazzeo L, Fernández-Cárdenas L, et al. Cysteine sulfenylation directs IRE-1 to activate the SKN-1/Nrf2 antioxidant response. Mol Cell. 2016;63(4):553–66. https://doi.org/10.1016/j.molcel.2016.07.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Huang B, Wu P, Bowker-Kinley MM, et al. Regulation of pyruvate dehydrogenase kinase expression by peroxisome proliferator-activated receptor-alpha ligands, glucocorticoids, and insulin. Diabetes. 2002;51(2):276–83. https://doi.org/10.2337/diabetes.51.2.276.

    Article  CAS  PubMed  Google Scholar 

  93. Huang Y, Li W, Su Z, et al. The complexity of the Nrf2 pathway: beyond the antioxidant response. J Nutr Biochem. 2015;26(12):1401–13. https://doi.org/10.1016/j.jnutbio.2015.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hudson DA, Gannon SA, Thorpe C. Oxidative protein folding: from thiol–disulfide exchange reactions to the redox poise of the endoplasmic reticulum. Free Radic Biol Med. 2015;80:171–82. https://doi.org/10.1016/j.freeradbiomed.2014.07.037.

    Article  CAS  PubMed  Google Scholar 

  95. Hwang C, Sinskey AJ, Lodish HF. Oxidized redox state of glutathione in the endoplasmic reticulum. Science. 1992;257(5076):1496–502. https://doi.org/10.1126/science.1523409.

    Article  CAS  PubMed  Google Scholar 

  96. Ishii M, Hogaboam CM, Joshi A, et al. CC chemokine receptor 4 modulates Toll-like receptor 9-mediated innate immunity and signaling. Eur J Immunol. 2008;38(8):2290–302. https://doi.org/10.1002/eji.200838360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Itoh K, Wakabayashi N, Katoh Y, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13(1):76–86. https://doi.org/10.1101/gad.13.1.76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ivanova IG, Park CV, Yemm AI, et al. PERK/eIF2α signaling inhibits HIF-induced gene expression during the unfolded protein response via YB1-dependent regulation of HIF1α translation. Nucleic Acids Res. 2018;46(8):3878–90. https://doi.org/10.1093/nar/gky127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Jernigan NL, Naik JS, Weise-Cross L, et al. Contribution of reactive oxygen species to the pathogenesis of pulmonary arterial hypertension. PLoS One. 2017;12(6):e0180455. https://doi.org/10.1371/journal.pone.0180455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kaneko M, Niinuma Y, Nomura Y. Activation signal of nuclear factor-κB in response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor receptor-associated factor 2. Biol Pharm Bull. 2003;26(7):931–5. https://doi.org/10.1248/bpb.26.931.

    Article  CAS  PubMed  Google Scholar 

  101. Kang S, Rane NS, Kim SJ, et al. Substrate-specific translocational attenuation during ER stress defines a pre-emptive quality control pathway. Cell. 2006;127(5):999–1013. https://doi.org/10.1016/j.cell.2006.10.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kang Y, Zhang G, Huang EC, et al. Sulforaphane prevents right ventricular injury and reduces pulmonary vascular remodeling in pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2020;318(4):853. https://doi.org/10.1152/ajpheart.00321.2019.

    Article  CAS  Google Scholar 

  103. Kaplin AI, Ferris CD, Voglmaier SM, et al. Purified reconstituted inositol 1,4,5-trisphosphate receptors. Thiol reagents act directly on receptor protein. J Biol Chem. 1994;269(46):28972–8.

    Article  CAS  PubMed  Google Scholar 

  104. Kapturczak MH, Wasserfall C, Brusko T, et al. Heme oxygenase-1 modulates early inflammatory responses: evidence from the heme oxygenase-1-deficient mouse. Am J Pathol. 2004;165(3):1045–53. https://doi.org/10.1016/S0002-9440(10)63365-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kataoka K, Igarashi K, Itoh K, et al. Small Maf proteins heterodimerize with Fos and may act as competitive repressors of the NF-E2 transcription factor. Mol Cell Biol. 1995;15(4):2180–90. https://doi.org/10.1128/mcb.15.4.2180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Katsuoka F, Yamamoto M. Small Maf proteins (MafF, MafG, MafK): history, structure and function. Gene. 2016;586(2):197–205. https://doi.org/10.1016/j.gene.2016.03.058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kawai T, Akira S. TLR signaling. Semin Immunol. 2007;19(1):24–32. https://doi.org/10.1016/j.smim.2006.12.004.

    Article  CAS  PubMed  Google Scholar 

  108. Kim I, Je HD, Gallant C, et al. Ca2+-calmodulin-dependent protein kinase II-dependent activation of contractility in ferret aorta. J Physiol. 2000;526(2):367–74. https://doi.org/10.1111/j.1469-7793.2000.00367.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kim J, Tchernyshyov I, Semenza GL, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3):177–85. https://doi.org/10.1016/j.cmet.2006.02.002.

    Article  CAS  PubMed  Google Scholar 

  110. Kimata Y, Oikawa D, Shimizu Y, et al. A role for BiP as an adjustor for the endoplasmic reticulum stress-sensing protein Ire1. J Cell Biol. 2004;167(3):445–56. https://doi.org/10.1083/jcb.200405153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kiselyov K, Xu X, Mozhayeva G, et al. Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature. 1998;396(6710):478–82. https://doi.org/10.1038/24890.

    Article  CAS  PubMed  Google Scholar 

  112. Kitamura M. Biphasic, bidirectional regulation of NF-κB by endoplasmic reticulum stress. Antioxid Redox Signal. 2009;11(9):2353–64. https://doi.org/10.1089/ars.2008.2391.

    Article  CAS  PubMed  Google Scholar 

  113. Kodali VK, Thorpe C. Oxidative protein folding and the Quiescin–sulfhydryl oxidase family of flavoproteins. Antioxid Redox Signal. 2010;13(8):1217–30. https://doi.org/10.1089/ars.2010.3098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Komatsu M, Kurokawa H, Waguri S, et al. The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol. 2010;12(3):213–23. https://doi.org/10.1038/ncb2021.

    Article  CAS  PubMed  Google Scholar 

  115. Kondo S, Saito A, Hino S, et al. BBF2H7, a novel transmembrane bZIP transcription factor, is a new type of endoplasmic reticulum stress transducer. Mol Cell Biol. 2007;27(5):1716–29. https://doi.org/10.1128/MCB.01552-06.

    Article  CAS  PubMed  Google Scholar 

  116. Koo B, Hwang H, Yi B, et al. Arginase II contributes to the Ca2+/CaMKII/eNOS axis by regulating Ca2+ concentration between the cytosol and mitochondria in a p32-dependent manner. J Am Heart Assoc. 2018;7(18):e009579. https://doi.org/10.1161/JAHA.118.009579.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Kornmann B. The molecular hug between the ER and the mitochondria. Curr Opin Cell Biol. 2013;25(4):443–8. https://doi.org/10.1016/j.ceb.2013.02.010.

    Article  CAS  PubMed  Google Scholar 

  118. Kosuri P, Alegre-Cebollada J, Feng J, et al. Protein folding drives disulfide formation. Cell. 2012;151(4):794–806. https://doi.org/10.1016/j.cell.2012.09.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kotlyarov A, Neininger A, Schubert C, et al. MAPKAP kinase 2 is essential for LPS-induced TNF-α biosynthesis. Nat Cell Biol. 1999;1(2):94–7. https://doi.org/10.1038/10061.

    Article  CAS  PubMed  Google Scholar 

  120. Kozutsumi Y, Segal M, Normington K, et al. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature. 1988;332(6163):462–4. https://doi.org/10.1038/332462a0.

    Article  CAS  PubMed  Google Scholar 

  121. Kranz P, Neumann F, Wolf A, et al. PDI is an essential redox-sensitive activator of PERK during the unfolded protein response (UPR). Cell Death Dis. 2017;8(8):e2986. https://doi.org/10.1038/cddis.2017.369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Krishnan SM, Sobey CG, Latz E, et al. IL-1β and IL-18: inflammatory markers or mediators of hypertension? Br J Pharmacol. 2014;171(24):5589–602. https://doi.org/10.1111/bph.12876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Krishnan SM, Dowling JK, Ling YH, et al. Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice. Br J Pharmacol. 2016;173(4):752–65. https://doi.org/10.1111/bph.13230.

    Article  CAS  PubMed  Google Scholar 

  124. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87(1):99–163. https://doi.org/10.1152/physrev.00013.2006.

    Article  CAS  PubMed  Google Scholar 

  125. Kueh HY, Niethammer P, Mitchison TJ. Maintenance of mitochondrial oxygen homeostasis by cosubstrate compensation. Biophys J. 2013;104(6):1338–48. https://doi.org/10.1016/j.bpj.2013.01.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Laabich A, Li G, Cooper NG. Characterization of apoptosis-genes associated with NMDA mediated cell death in the adult rat retina. Brain Res Mol Brain Res. 2001;91(1–2):34–42. https://doi.org/10.1016/s0169-328x(01)00116-4.

    Article  CAS  PubMed  Google Scholar 

  127. Lee C. Collaborative power of Nrf2 and PPARγ activators against metabolic and drug-induced oxidative injury. Oxidative Med Cell Longev. 2017;2017:1378175. https://doi.org/10.1155/2017/1378175.

    Article  CAS  Google Scholar 

  128. Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020;21(5):268–83. https://doi.org/10.1038/s41580-020-0227-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Lenna S, Farina AG, Martyanov V, et al. Increased expression of endoplasmic reticulum stress and unfolded protein response genes in peripheral blood mononuclear cells from patients with limited cutaneous systemic sclerosis and pulmonary arterial hypertension. Arthritis Rheum. 2013;65(5):1357–66. https://doi.org/10.1002/art.37891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Li F, Malik KU. Angiotensin II-induced Akt activation is mediated by metabolites of arachidonic acid generated by CaMKII-stimulated Ca2(+)-dependent phospholipase A2. Am J Physiol Heart Circ Physiol. 2005;288(5):2306. https://doi.org/10.1152/ajpheart.00571.2004.

    Article  CAS  Google Scholar 

  131. Li G, Mongillo M, Chin K, et al. Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J Cell Biol. 2009;186(6):783–92. https://doi.org/10.1083/jcb.200904060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Li G, Scull C, Ozcan L, et al. NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis. J Cell Biol. 2010;191(6):1113–25. https://doi.org/10.1083/jcb.201006121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Li H, Li W, Gupta AK, et al. Calmodulin kinase II is required for angiotensin II-mediated vascular smooth muscle hypertrophy. Am J Physiol Heart Circ Physiol. 2010;298(2):688. https://doi.org/10.1152/ajpheart.01014.2009.

    Article  CAS  Google Scholar 

  134. Li W, Li H, Sanders PN, et al. The multifunctional Ca2+/calmodulin-dependent kinase II delta (CaMKIIdelta) controls neointima formation after carotid ligation and vascular smooth muscle cell proliferation through cell cycle regulation by p21. J Biol Chem. 2011;286(10):7990–9. https://doi.org/10.1074/jbc.M110.163006.

    Article  CAS  PubMed  Google Scholar 

  135. Liang L, Wang M, Liu M, et al. Chronic toxicity of methamphetamine: oxidative remodeling of pulmonary arteries. Toxicol In Vitro. 2020;62:104668. https://doi.org/10.1016/j.tiv.2019.104668.

    Article  CAS  PubMed  Google Scholar 

  136. Lin W, Harding HP, Ron D, et al. Endoplasmic reticulum stress modulates the response of myelinating oligodendrocytes to the immune cytokine interferon-γ. J Cell Biol. 2005;169(4):603–12. https://doi.org/10.1083/jcb.200502086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu JQ, Zelko IN, Erbynn EM, et al. Hypoxic pulmonary hypertension: role of superoxide and NADPH oxidase (gp91phox). Am J Physiol Lung Cell Mol Physiol. 2006;290(1):2. https://doi.org/10.1152/ajplung.00135.2005.

    Article  CAS  Google Scholar 

  138. Liu W, Wang L, Lai Y. Hepcidin protects pulmonary artery hypertension in rats by activating NF-κB/TNF-α pathway. Eur Rev Med Pharmacol Sci. 2019;23(17):7573–81. https://doi.org/10.26355/eurrev_201909_18878.

    Article  PubMed  Google Scholar 

  139. Llesuy SF, Tomaro ML. Heme oxygenase and oxidative stress. Evidence of involvement of bilirubin as physiological protector against oxidative damage. Biochim Biophys Acta. 1994;1(1):9–14. https://doi.org/10.1016/0167-4889(94)90067-1.

    Article  Google Scholar 

  140. Loinard C, Zouggari Y, Rueda P, et al. C/EBP homologous protein-10 (CHOP-10) limits postnatal neovascularization through control of endothelial nitric oxide synthase gene expression. Circulation. 2012;125(8):1014–26. https://doi.org/10.1161/CIRCULATIONAHA.111.041830.

    Article  CAS  PubMed  Google Scholar 

  141. Luke T, Maylor J, Undem C, et al. Kinase-dependent activation of voltage-gated Ca2+ channels by ET-1 in pulmonary arterial myocytes during chronic hypoxia. Am J Physiol Lung Cell Mol Physiol. 2012;302(10):1128. https://doi.org/10.1152/ajplung.00396.2011.

    Article  CAS  Google Scholar 

  142. Luo Q, Wang X, Liu R, et al. alpha1A-adrenoceptor is involved in norepinephrine-induced proliferation of pulmonary artery smooth muscle cells via CaMKII signaling. J Cell Biochem. 2019;120(6):9345–55. https://doi.org/10.1002/jcb.28210.

    Article  CAS  PubMed  Google Scholar 

  143. Ma L, Chung WK. The role of genetics in pulmonary arterial hypertension. J Pathol. 2017;241(2):273–80. https://doi.org/10.1002/path.4833.

    Article  CAS  PubMed  Google Scholar 

  144. Ma HT, Patterson RL, van Rossum DB, et al. Requirement of the inositol trisphosphate receptor for activation of store-operated Ca2+ channels. Science. 2000;287(5458):1647–51. https://doi.org/10.1126/science.287.5458.1647.

    Article  CAS  PubMed  Google Scholar 

  145. Magesh S, Chen Y, Hu L. Small molecule modulators of Keap1-Nrf2-ARE pathway as potential preventive and therapeutic agents. Med Res Rev. 2012;32(4):687–726. https://doi.org/10.1002/med.21257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Majmundar AJ, Wong WJ, Simon MC. Hypoxia inducible factors and the response to hypoxic stress. Mol Cell. 2010;40(2):294–309. https://doi.org/10.1016/j.molcel.2010.09.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Malhotra JD, Hongzhi M, Zhang K, et al. Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proc Natl Acad Sci. 2008;105(47):18525–30. https://doi.org/10.1073/pnas.0809677105.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Malik A, Kanneganti T. Inflammasome activation and assembly at a glance. J Cell Sci. 2017;130(23):3955–63. https://doi.org/10.1242/jcs.207365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Mao W, Fukuoka S, Iwai C, et al. Cardiomyocyte apoptosis in autoimmune cardiomyopathy: mediated via endoplasmic reticulum stress and exaggerated by norepinephrine. Am J Physiol Heart Circ Physiol. 2007;293(3):1636. https://doi.org/10.1152/ajpheart.01377.2006.

    Article  CAS  Google Scholar 

  150. Marciniak SJ, Yun CY, Oyadomari S, et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 2004;18(24):3066–77. https://doi.org/10.1101/gad.1250704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Margittai É, Enyedi B, Csala M, et al. Composition of the redox environment of the endoplasmic reticulum and sources of hydrogen peroxide. Free Radic Biol Med. 2015;83:331–40. https://doi.org/10.1016/j.freeradbiomed.2015.01.032.

    Article  CAS  PubMed  Google Scholar 

  152. Marmiroli S, Bavelloni A, Faenza I, et al. Phosphatidylinositol 3-kinase is recruited to a specific site in the activated IL-1 receptor I. FEBS Lett. 1998;438(1–2):49–54. https://doi.org/10.1016/S0014-5793(98)01270-8.

    Article  CAS  PubMed  Google Scholar 

  153. Marsboom G, Toth PT, Ryan JJ, et al. Dynamin-related protein 1–mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension. Circ Res. 2012;110(11):1484–97. https://doi.org/10.1161/CIRCRESAHA.111.263848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Martin MU, Wesche H. Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. Biochim Biophys Acta. 2002;1592(3):265–80. https://doi.org/10.1016/s0167-4889(02)00320-8.

    Article  CAS  PubMed  Google Scholar 

  155. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26. https://doi.org/10.1016/S1097-2765(02)00599-3.

    Article  CAS  PubMed  Google Scholar 

  156. Martinon F, Pétrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–41. https://doi.org/10.1038/nature04516.

    Article  CAS  PubMed  Google Scholar 

  157. Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol. 2009;27:229–65. https://doi.org/10.1146/annurev.immunol.021908.132715.

    Article  CAS  PubMed  Google Scholar 

  158. Martinon F, Chen X, Lee A, et al. TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol. 2010;11(5):411–8. https://doi.org/10.1038/ni.1857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mathers J, Fraser JA, McMahon M, et al. Antioxidant and cytoprotective responses to redox stress. Biochem Soc Symp. 2004;71:157–76. https://doi.org/10.1042/bss0710157.

    Article  CAS  Google Scholar 

  160. McCullough KD, Martindale JL, Klotz L, et al. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol. 2001;21(4):1249–59. https://doi.org/10.1128/MCB.21.4.1249-1259.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Melber A, Haynes CM. UPRmt regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res. 2018;28(3):281–95. https://doi.org/10.1038/cr.2018.16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Meyer M, Caselmann WH, Schlüter V, et al. Hepatitis B virus transactivator MHBst: activation of NF-kappa B, selective inhibition by antioxidants and integral membrane localization. EMBO J. 1992;11(8):2991–3001. https://doi.org/10.1002/j.1460-2075.1992.tb05369.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Minamino T, Christou H, Hsieh C, et al. Targeted expression of heme oxygenase-1 prevents the pulmonary inflammatory and vascular responses to hypoxia. Proc Natl Acad Sci. 2001;98(15):8798–803. https://doi.org/10.1073/pnas.161272598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Misra S, Heldin P, Hascall VC, et al. Hyaluronan-CD44 interactions as potential targets for cancer therapy. FEBS J. 2011;278(9):1429–43. https://doi.org/10.1111/j.1742-4658.2011.08071.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Misra S, Hascall VC, Markwald RR, et al. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front Immunol. 2015;6:201. https://doi.org/10.3389/fimmu.2015.00201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mittal M, Roth M, König P, et al. Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature. Circ Res. 2007;101(3):258–67. https://doi.org/10.1161/CIRCRESAHA.107.148015.

    Article  CAS  PubMed  Google Scholar 

  167. Miyake K, Underhill CB, Lesley J, et al. Hyaluronate can function as a cell adhesion molecule and CD44 participates in hyaluronate recognition. J Exp Med. 1990;172(1):69–75. https://doi.org/10.1084/jem.172.1.69.

    Article  CAS  PubMed  Google Scholar 

  168. Mogilenko DA, Haas JT, L’homme L, et al. Metabolic and innate immune cues merge into a specific inflammatory response via the UPR. Cell. 2019;177(5):1201–1216.e19. https://doi.org/10.1016/j.cell.2019.03.018.

    Article  CAS  PubMed  Google Scholar 

  169. Montorfano I, Becerra A, Cerro R, et al. Oxidative stress mediates the conversion of endothelial cells into myofibroblasts via a TGF-β1 and TGF-β2-dependent pathway. Lab Investig. 2014;94(10):1068–82. https://doi.org/10.1038/labinvest.2014.100.

    Article  CAS  PubMed  Google Scholar 

  170. Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011;21(1):103–15. https://doi.org/10.1038/cr.2010.178.

    Article  CAS  PubMed  Google Scholar 

  171. Mori K, Ma W, Gething M, et al. A transmembrane protein with a cdc2+CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell. 1993;74(4):743–56. https://doi.org/10.1016/0092-8674(93)90521-Q.

    Article  CAS  PubMed  Google Scholar 

  172. Motohashi H, Shavit JA, Igarashi K, et al. The world according to Maf. Nucleic Acids Res. 1997;25(15):2953–9. https://doi.org/10.1093/nar/25.15.2953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Mulero MC, Wang VY, Huxford T, et al. Genome reading by the NF-κB transcription factors. Nucleic Acids Res. 2019;47(19):9967–89. https://doi.org/10.1093/nar/gkz739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Münch C. The different axes of the mammalian mitochondrial unfolded protein response. BMC Biol. 2018;16(1):81. https://doi.org/10.1186/s12915-018-0548-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Murakami T, Kondo S, Ogata M, et al. Cleavage of the membrane-bound transcription factor OASIS in response to endoplasmic reticulum stress. J Neurochem. 2006;96(4):1090–100. https://doi.org/10.1111/j.1471-4159.2005.03596.x.

    Article  CAS  PubMed  Google Scholar 

  176. Nardai G, Braun L, Csala M, et al. Protein-disulfide isomerase- and protein thiol-dependent dehydroascorbate reduction and ascorbate accumulation in the lumen of the endoplasmic reticulum. J Biol Chem. 2001;276(12):8825–8. https://doi.org/10.1074/jbc.M010563200.

    Article  CAS  PubMed  Google Scholar 

  177. Nargund AM, Pellegrino MW, Fiorese CJ, et al. Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science. 2012;337(6094):587–90. https://doi.org/10.1126/science.1223560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Nguyen T, Sherratt PJ, Pickett CB. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol. 2003;43:233–60. https://doi.org/10.1146/annurev.pharmtox.43.100901.140229.

    Article  CAS  PubMed  Google Scholar 

  179. Nishitoh H, Matsuzawa A, Tobiume K, et al. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 2002;16(11):1345–55. https://doi.org/10.1101/gad.992302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Novoa I, Zeng H, Harding HP, et al. Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2α. J Cell Biol. 2001;153(5):1011–22. https://doi.org/10.1083/jcb.153.5.1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ochoa CD, Wu RF, Terada LS. ROS signaling and ER stress in cardiovascular disease. Mol Asp Med. 2018;63:18–29. https://doi.org/10.1016/j.mam.2018.03.002.

    Article  CAS  Google Scholar 

  182. Otterbein LE, Bach FH, Alam J, et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med. 2000;6(4):422–8. https://doi.org/10.1038/74680.

    Article  CAS  PubMed  Google Scholar 

  183. Pahl HL, Baeuerle PA. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NF-kappa B. EMBO J. 1995;14(11):2580–8. https://doi.org/10.1002/j.1460-2075.1995.tb07256.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Patil C, Walter P. Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol. 2001;13(3):349–55. https://doi.org/10.1016/S0955-0674(00)00219-2.

    Article  CAS  PubMed  Google Scholar 

  185. Pedruzzi E, Guichard C, Ollivier V, et al. NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Mol Cell Biol. 2004;24(24):10703–17. https://doi.org/10.1128/MCB.24.24.10703-10717.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Piccirella S, Czegle I, Lizák B, et al. Uncoupled redox systems in the lumen of the endoplasmic reticulum. Pyridine nucleotides stay reduced in an oxidative environment. J Biol Chem. 2006;281(8):4671–7. https://doi.org/10.1074/jbc.M509406200.

    Article  CAS  PubMed  Google Scholar 

  187. Pollard MG, Travers KJ, Weissman JS. Ero1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol Cell. 1998;1(2):171–82. https://doi.org/10.1016/S1097-2765(00)80018-0.

    Article  CAS  PubMed  Google Scholar 

  188. Polverino F, Celli BR, Owen CA. COPD as an endothelial disorder: endothelial injury linking lesions in the lungs and other organs? Pulm Circ. 2018;8(1):2045894018758528. https://doi.org/10.1177/2045894018758528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Prasad AM, Nuno DW, Koval OM, et al. Differential control of calcium homeostasis and vascular reactivity by Ca2+/calmodulin-dependent kinase II. Hypertension. 2013;62(2):434–41. https://doi.org/10.1161/HYPERTENSIONAHA.113.01508.

    Article  CAS  PubMed  Google Scholar 

  190. Pugliese SC, Poth JM, Fini MA, et al. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes. Am J Physiol Lung Cell Mol Physiol. 2015;308(3):229. https://doi.org/10.1152/ajplung.00238.2014.

    Article  CAS  Google Scholar 

  191. Quirós PM, Prado MA, Zamboni N, et al. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J Cell Biol. 2017;216(7):2027–45. https://doi.org/10.1083/jcb.201702058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ramming T, Appenzeller-Herzog C. Destroy and exploit: catalyzed removal of hydroperoxides from the endoplasmic reticulum. Int J Cell Biol. 2013;2013:180906–13. https://doi.org/10.1155/2013/180906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ramming T, Hansen HG, Nagata K, et al. GPx8 peroxidase prevents leakage of H2O2 from the endoplasmic reticulum. Free Radic Biol Med. 2014;70:106–16. https://doi.org/10.1016/j.freeradbiomed.2014.01.018.

    Article  CAS  PubMed  Google Scholar 

  194. Ramming T, Okumura M, Kanemura S, et al. A PDI-catalyzed thiol–disulfide switch regulates the production of hydrogen peroxide by human Ero1. Free Radic Biol Med. 2015;83:361–72. https://doi.org/10.1016/j.freeradbiomed.2015.02.011.

    Article  CAS  PubMed  Google Scholar 

  195. Reddy SAG, Huang JH, Liao WS. Phosphatidylinositol 3-kinase in interleukin 1 signaling. Physical interaction with the interleukin 1 receptor and requirement in NFkappaB and AP-1 activation. J Biol Chem. 1997;272(46):29167–73. https://doi.org/10.1074/jbc.272.46.29167.

    Article  CAS  PubMed  Google Scholar 

  196. Rubio C, Pincus D, Korennykh A, et al. Homeostatic adaptation to endoplasmic reticulum stress depends on Ire1 kinase activity. J Cell Biol. 2011;193(1):171–84. https://doi.org/10.1083/jcb.201007077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Rutkowski DT, Hegde RS. Regulation of basal cellular physiology by the homeostatic unfolded protein response. J Cell Biol. 2010;189(5):783–94. https://doi.org/10.1083/jcb.201003138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sacerdote P, Massi P, Panerai AE, et al. In vivo and in vitro treatment with the synthetic cannabinoid CP55, 940 decreases the in vitro migration of macrophages in the rat: involvement of both CB1 and CB2 receptors. J Neuroimmunol. 2000;109(2):155–63. https://doi.org/10.1016/S0165-5728(00)00307-6.

    Article  CAS  PubMed  Google Scholar 

  199. Santos CXC, Tanaka LY, Wosniak J, et al. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal. 2009;11(10):2409–27. https://doi.org/10.1089/ars.2009.2625.

    Article  CAS  PubMed  Google Scholar 

  200. Santos CXC, Nabeebaccus AA, Shah AM, et al. Endoplasmic reticulum stress and Nox-mediated reactive oxygen species signaling in the peripheral vasculature: potential role in hypertension. Antioxid Redox Signal. 2014;20(1):121–34. https://doi.org/10.1089/ars.2013.5262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Sawada H, Saito T, Nickel NP, et al. Reduced BMPR2 expression induces GM-CSF translation and macrophage recruitment in humans and mice to exacerbate pulmonary hypertension. J Exp Med. 2014;211(2):263–80. https://doi.org/10.1084/jem.20111741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Sborgi L, Ravotti F, Dandey VP, et al. Structure and assembly of the mouse ASC inflammasome by combined NMR spectroscopy and cryo-electron microscopy. Proc Natl Acad Sci. 2015;112(43):13237–42. https://doi.org/10.1073/pnas.1507579112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Schindler AJ, Schekman R. In vitro reconstitution of ER-stress induced ATF6 transport in COPII vesicles. Proc Natl Acad Sci. 2009;106(42):17775–80. https://doi.org/10.1073/pnas.0910342106.

    Article  PubMed  PubMed Central  Google Scholar 

  204. Schröder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem. 2005;74:739–89. https://doi.org/10.1146/annurev.biochem.73.011303.074134.

    Article  CAS  PubMed  Google Scholar 

  205. Sciarretta S, Zhai P, Shao D, et al. Activation of NADPH oxidase 4 in the endoplasmic reticulum promotes cardiomyocyte autophagy and survival during energy stress through the protein kinase RNA-activated-like endoplasmic reticulum kinase/eukaryotic initiation factor 2α/activating transcription factor 4 pathway. Circ Res. 2013;113(11):1253–64. https://doi.org/10.1161/CIRCRESAHA.113.301787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Scott JA, Xie L, Li H, et al. The multifunctional Ca2+/calmodulin-dependent kinase II regulates vascular smooth muscle migration through matrix metalloproteinase 9. Am J Physiol Heart Circ Physiol. 2012;302(10):1953. https://doi.org/10.1152/ajpheart.00978.2011.

    Article  CAS  Google Scholar 

  207. Scott TE, Kemp-Harper BK, Hobbs AJ. Inflammasomes: a novel therapeutic target in pulmonary hypertension? Br J Pharmacol. 2019;176(12):1880–96. https://doi.org/10.1111/bph.14375.

    Article  CAS  PubMed  Google Scholar 

  208. Sepulveda D, Rojas-Rivera D, Rodríguez DA, et al. Interactome screening identifies the ER luminal chaperone Hsp47 as a regulator of the unfolded protein response transducer IRE1α. Mol Cell. 2018;69(2):238–252.e7. https://doi.org/10.1016/j.molcel.2017.12.028.

    Article  CAS  PubMed  Google Scholar 

  209. Shen J, Chen X, Hendershot L, et al. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell. 2002;3(1):99–111. https://doi.org/10.1016/S1534-5807(02)00203-4.

    Article  CAS  PubMed  Google Scholar 

  210. Shoulders MD, Ryno LM, Genereux JC, et al. Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. Cell Rep. 2013;3(4):1279–92. https://doi.org/10.1016/j.celrep.2013.03.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Shpilka T, Haynes CM. The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol. 2018;19(2):109–20. https://doi.org/10.1038/nrm.2017.110.

    Article  CAS  PubMed  Google Scholar 

  212. Sicari D, Delaunay-Moisan A, Combettes L, et al. A guide to assessing endoplasmic reticulum homeostasis and stress in mammalian systems. FEBS J. 2020;287(1):27–42. https://doi.org/10.1111/febs.15107.

    Article  CAS  PubMed  Google Scholar 

  213. Simenauer A, Assefa B, Rios-Ochoa J, et al. Repression of Nrf2/ARE regulated antioxidant genes and dysregulation of the cellular redox environment by the HIV transactivator of transcription. Free Radic Biol Med. 2019;141:244–52. https://doi.org/10.1016/j.freeradbiomed.2019.06.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Simmen T, Lynes EM, Gesson K, et al. Oxidative protein folding in the endoplasmic reticulum: tight links to the mitochondria-associated membrane (MAM). Biochim Biophys Acta. 2010;1798(8):1465–73. https://doi.org/10.1016/j.bbamem.2010.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Soares MP, Lin Y, Anrather J, et al. Expression of heme oxygenase-1 can determine cardiac xenograft survival. Nat Med. 1998;4(9):1073–7. https://doi.org/10.1038/2063.

    Article  CAS  PubMed  Google Scholar 

  216. Sohara Y, Ishiguro N, Machida K, et al. Hyaluronan activates cell motility of v-Src-transformed cells via Ras-mitogen-activated protein kinase and phosphoinositide 3-kinase-Akt in a tumor-specific manner. Mol Biol Cell. 2001;12(6):1859–68. https://doi.org/10.1091/mbc.12.6.1859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Song B, Scheuner D, Ron D, et al. Chop deletion reduces oxidative stress, improves β cell function, and promotes cell survival in multiple mouse models of diabetes. J Clin Invest. 2008;118(10):3378–89. https://doi.org/10.1172/JCI34587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Sriburi R, Jackowski S, Mori K, et al. XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum. J Cell Biol. 2004;167(1):35–41. https://doi.org/10.1083/jcb.200406136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Stacher E, Graham BB, Hunt JM, et al. Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186(3):261–72. https://doi.org/10.1164/rccm.201201-0164OC.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Stauffer WT, Arrieta A, Blackwood EA, et al. Sledgehammer to scalpel: broad challenges to the heart and other tissues yield specific cellular responses via transcriptional regulation of the ER-stress master regulator ATF6α. Int J Mol Sci. 2020;21(3):1134. https://doi.org/10.3390/ijms21031134.

    Article  CAS  PubMed Central  Google Scholar 

  221. Stenmark KR, Tuder RM, El Kasmi KC. Metabolic reprogramming and inflammation act in concert to control vascular remodeling in hypoxic pulmonary hypertension. J Appl Physiol. 2015;119(10):1164–72. https://doi.org/10.1152/japplphysiol.00283.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Stocker R, Yamamoto Y, McDonagh AF, et al. Bilirubin is an antioxidant of possible physiological importance. Science. 1987;235(4792):1043–6. https://doi.org/10.1126/science.3029864.

    Article  CAS  PubMed  Google Scholar 

  223. Strieter RM, Kunkel SL, Keane MP, et al. Chemokines in lung injury: Thomas A. Neff Lecture. Chest. 1999;116(1 Suppl):103S–10S. https://doi.org/10.1378/chest.116.suppl_1.103s.

    Article  CAS  PubMed  Google Scholar 

  224. Sutendra G, Dromparis P, Wright P, et al. The role of Nogo and the mitochondria-endoplasmic reticulum unit in pulmonary hypertension. Sci Transl Med. 2011;3(88):88ra55. https://doi.org/10.1126/scitranslmed.3002194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Száraz P, Bánhegyi G, Benedetti A. Altered redox state of luminal pyridine nucleotides facilitates the sensitivity towards oxidative injury and leads to endoplasmic reticulum stress dependent autophagy in HepG2 cells. Int J Biochem Cell Biol. 2010;42(1):157–66. https://doi.org/10.1016/j.biocel.2009.10.004.

    Article  CAS  PubMed  Google Scholar 

  226. Tammi MI, Day AJ, Turley EA. Hyaluronan and homeostasis: a balancing act. J Biol Chem. 2002;277(7):4581–4. https://doi.org/10.1074/jbc.R100037200.

    Article  CAS  PubMed  Google Scholar 

  227. Tavender TJ, Bulleid NJ. Molecular mechanisms regulating oxidative activity of the Ero1 family in the endoplasmic reticulum. Antioxid Redox Signal. 2010;13(8):1177–87. https://doi.org/10.1089/ars.2010.3230.

    Article  CAS  PubMed  Google Scholar 

  228. Tavender TJ, Sheppard AM, Bulleid NJ. Peroxiredoxin IV is an endoplasmic reticulum-localized enzyme forming oligomeric complexes in human cells. Biochem J. 2008;411(1):191–9. https://doi.org/10.1042/BJ20071428.

    Article  CAS  PubMed  Google Scholar 

  229. Tebay LE, Robertson H, Durant ST, et al. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med. 2015;88(Pt B):108–46. https://doi.org/10.1016/j.freeradbiomed.2015.06.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Thenappan T, Chan SY, Weir EK. Role of extracellular matrix in the pathogenesis of pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2018;315(5):1322. https://doi.org/10.1152/ajpheart.00136.2018.

    Article  Google Scholar 

  231. Thon M, Hosoi T, Ozawa K. Dehydroascorbic acid-induced endoplasmic reticulum stress and leptin resistance in neuronal cells. Biochem Biophys Res Commun. 2016;478(2):716–20. https://doi.org/10.1016/j.bbrc.2016.08.013.

    Article  CAS  PubMed  Google Scholar 

  232. Timmins JM, Ozcan L, Seimon TA, et al. Calcium/calmodulin-dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J Clin Invest. 2009;119(10):2925–41. https://doi.org/10.1172/JCI38857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Tirasophon W, Welihinda AA, Kaufman RJ. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 1998;12(12):1812–24. https://doi.org/10.1101/gad.12.12.1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Travers KJ, Patil CK, Wodicka L, et al. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell. 2000;101(3):249–58. https://doi.org/10.1016/s0092-8674(00)80835-1.

    Article  CAS  PubMed  Google Scholar 

  235. Tu BP, Ho-Schleyer SC, Travers KJ, et al. Biochemical basis of oxidative protein folding in the endoplasmic reticulum. Science. 2000;290(5496):1571–4. https://doi.org/10.1126/science.290.5496.1571.

    Article  CAS  PubMed  Google Scholar 

  236. Tuder RM. Pulmonary vascular remodeling in pulmonary hypertension. Cell Tissue Res. 2017;367(3):643–9. https://doi.org/10.1007/s00441-016-2539-y.

    Article  PubMed  Google Scholar 

  237. Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000;287(5453):664–6. https://doi.org/10.1126/science.287.5453.664.

    Article  CAS  PubMed  Google Scholar 

  238. van Dam L, Dansen TB. Cross-talk between redox signalling and protein aggregation. Biochem Soc Trans. 2020;48(2):379–97. https://doi.org/10.1042/BST20190054.

    Article  PubMed  PubMed Central  Google Scholar 

  239. van Vliet AR, Verfaillie T, Agostinis P. New functions of mitochondria associated membranes in cellular signaling. Biochim Biophys Acta. 2014;1843(10):2253–62. https://doi.org/10.1016/j.bbamcr.2014.03.009.

    Article  CAS  PubMed  Google Scholar 

  240. Vila-Petroff M, Salas MA, Said M, et al. CaMKII inhibition protects against necrosis and apoptosis in irreversible ischemia-reperfusion injury. Cardiovasc Res. 2007;73(4):689–98. https://doi.org/10.1016/j.cardiores.2006.12.003.

    Article  CAS  PubMed  Google Scholar 

  241. Villegas LR, Kluck D, Field C, et al. Superoxide dismutase mimetic, MnTE-2-PyP, attenuates chronic hypoxia-induced pulmonary hypertension, pulmonary vascular remodeling, and activation of the NALP3 inflammasome. Antioxid Redox Signal. 2013;18(14):1753–64. https://doi.org/10.1089/ars.2012.4799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Wagner L, Laczy B, Tamaskó M, et al. Cigarette smoke-induced alterations in endothelial nitric oxide synthase phosphorylation: role of protein kinase C. Endothelium. 2007;14(4–5):245–55. https://doi.org/10.1080/10623320701606707.

    Article  CAS  PubMed  Google Scholar 

  243. Wajih N, Hutson SM, Wallin R. Disulfide-dependent protein folding is linked to operation of the vitamin K cycle in the endoplasmic reticulum. J Biol Chem. 2007;282(4):2626–35. https://doi.org/10.1074/jbc.M608954200.

    Article  CAS  PubMed  Google Scholar 

  244. Wang X, Zhang Y, Jolicoeur EM, et al. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J. 1998;17(19):5708–17. https://doi.org/10.1093/emboj/17.19.5708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Wang Q, Zuo X, Wang Y, et al. Monocrotaline-induced pulmonary arterial hypertension is attenuated by TNF-α antagonists via the suppression of TNF-α expression and NF-κB pathway in rats. Vasc Pharmacol. 2013;58(1–2):71–7. https://doi.org/10.1016/j.vph.2012.07.006.

    Article  CAS  Google Scholar 

  246. Wang P, Li J, Tao J, et al. The luminal domain of the ER stress sensor protein PERK binds misfolded proteins and thereby triggers PERK oligomerization. J Biol Chem. 2018;293(11):4110–21. https://doi.org/10.1074/jbc.RA117.001294.

    Article  CAS  PubMed  Google Scholar 

  247. Wang E, Jia M, Luo F, et al. Coordination between NADPH oxidase and vascular peroxidase 1 promotes dysfunctions of endothelial progenitor cells in hypoxia-induced pulmonary hypertensive rats. Eur J Pharmacol. 2019;857:172459. https://doi.org/10.1016/j.ejphar.2019.172459.

    Article  CAS  PubMed  Google Scholar 

  248. Wedgwood S, Dettman RW, Black SM. ET-1 stimulates pulmonary arterial smooth muscle cell proliferation via induction of reactive oxygen species. Am J Physiol Lung Cell Mol Physiol. 2001;281(5):1058. https://doi.org/10.1152/ajplung.2001.281.5.L1058.

    Article  Google Scholar 

  249. Wei P, Hsieh Y, Su M, et al. Loss of the oxidative stress sensor NPGPx compromises GRP78 chaperone activity and induces systemic disease. Mol Cell. 2012;48(5):747–59. https://doi.org/10.1016/j.molcel.2012.10.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Weise-Cross L, Sands MA, Sheak JR, et al. Actin polymerization contributes to enhanced pulmonary vasoconstrictor reactivity after chronic hypoxia. Am J Physiol Heart Circ Physiol. 2018;314(5):1011. https://doi.org/10.1152/ajpheart.00664.2017.

    Article  CAS  Google Scholar 

  251. Weise-Cross L, Resta TC, Jernigan NL. Redox regulation of ion channels and receptors in pulmonary hypertension. Antioxid Redox Signal. 2019;31(12):898–915. https://doi.org/10.1089/ars.2018.7699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Wells WW, Xu DP, Yang YF, et al. Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J Biol Chem. 1990;265(26):15361–4.

    Article  CAS  PubMed  Google Scholar 

  253. Wetmore DR, Hardman KD. Roles of the propeptide and metal ions in the folding and stability of the catalytic domain of stromelysin (matrix metalloproteinase 3). Biochemistry. 1996;35(21):6549–58. https://doi.org/10.1021/bi9530752.

    Article  CAS  PubMed  Google Scholar 

  254. Wietek C, O’Neill LAJ. Diversity and regulation in the NF-κB system. Trends Biochem Sci. 2007;32(7):311–9. https://doi.org/10.1016/j.tibs.2007.05.003.

    Article  CAS  PubMed  Google Scholar 

  255. Woehlbier U, Hetz C. Modulating stress responses by the UPRosome: a matter of life and death. Trends Biochem Sci. 2011;36(6):329–37. https://doi.org/10.1016/j.tibs.2011.03.001.

    Article  CAS  PubMed  Google Scholar 

  256. Woo CW, Cui D, Arellano J, et al. Adaptive suppression of the ATF4–CHOP branch of the unfolded protein response by toll-like receptor signalling. Nat Cell Biol. 2009;11(12):1473–80. https://doi.org/10.1038/ncb1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Wrobel L, Topf U, Bragoszewski P, et al. Mistargeted mitochondrial proteins activate a proteostatic response in the cytosol. Nature. 2015;524(7566):485–8. https://doi.org/10.1038/nature14951.

    Article  CAS  PubMed  Google Scholar 

  258. Wu S, Tan M, Hu Y, et al. Ultraviolet light activates NFκB through translational inhibition of IκBα synthesis. J Biol Chem. 2004;279(33):34898–902. https://doi.org/10.1074/jbc.M405616200.

    Article  CAS  PubMed  Google Scholar 

  259. Wu Y, Adi D, Long M, et al. 4-Phenylbutyric acid induces protection against pulmonary arterial hypertension in rats. PLoS One. 2016;11(6):e0157538. https://doi.org/10.1371/journal.pone.0157538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Xia Y, Shen S, Verma IM. NF-κB, an active player in human cancers. Cancer Immunol Res. 2014;2(9):823–30. https://doi.org/10.1158/2326-6066.CIR-14-0112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Xing Z, Gauldie J, Cox G, et al. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest. 1998;101(2):311–20. https://doi.org/10.1172/JCI1368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Xing Z, Jordana M, Gauldie J, et al. Cytokines and pulmonary inflammatory and immune diseases. Histol Histopathol. 1999;14(1):185–201. https://doi.org/10.14670/HH-14.185.

    Article  CAS  PubMed  Google Scholar 

  263. Ye J, Rawson RB, Komuro R, et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 2000;6(6):1355–64. https://doi.org/10.1016/S1097-2765(00)00133-7.

    Article  CAS  PubMed  Google Scholar 

  264. Yeager ME, Belchenko DD, Nguyen CM, et al. Endothelin-1, the unfolded protein response, and persistent inflammation: role of pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol. 2012;46(1):14–22. https://doi.org/10.1165/rcmb.2010-0506OC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Yeager ME, Reddy MB, Nguyen CM, et al. Activation of the unfolded protein response is associated with pulmonary hypertension. Pulm Circ. 2012;2(2):229–40. https://doi.org/10.4103/2045-8932.97613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Yoshida H, Haze K, Yanagi H, et al. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose-regulated proteins. Involvement of basic leucine zipper transcription factors. J Biol Chem. 1998;273(50):33741–9. https://doi.org/10.1074/jbc.273.50.33741.

    Article  CAS  PubMed  Google Scholar 

  267. Yoshida H, Matsui T, Yamamoto A, et al. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell. 2001;107(7):881–91. https://doi.org/10.1016/S0092-8674(01)00611-0.

    Article  CAS  PubMed  Google Scholar 

  268. Yu H, Alruwaili N, Hu B, et al. Potential role of cartilage oligomeric matrix protein in the modulation of pulmonary arterial smooth muscle superoxide by hypoxia. Am J Physiol Lung Cell Mol Physiol. 2019;317(5):L569–77. https://doi.org/10.1152/ajplung.00080.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Zhang DD. Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab Rev. 2006;38(4):769–89. https://doi.org/10.1080/03602530600971974.

    Article  CAS  PubMed  Google Scholar 

  270. Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008;454(7203):455–62. https://doi.org/10.1038/nature07203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Zhang W, Chen D, Qi F, et al. Inhibition of calcium-calmodulin-dependent kinase II suppresses cardiac fibroblast proliferation and extracellular matrix secretion. J Cardiovasc Physiol. 2010;55(1):96–105. https://doi.org/10.1097/FJC.0b013e3181c9548b.

    Article  CAS  Google Scholar 

  272. Zhang Z, Zhang L, Zhou L, et al. Redox signaling and unfolded protein response coordinate cell fate decisions under ER stress. Redox Biol. 2019;25:101047. https://doi.org/10.1016/j.redox.2018.11.005.

    Article  CAS  PubMed  Google Scholar 

  273. Zhou BP, Liao Y, Xia W, et al. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol. 2001;3(11):973–82. https://doi.org/10.1038/ncb1101-973.

    Article  CAS  PubMed  Google Scholar 

  274. Zhou H, Liu H, Porvasnik SL, et al. Heme oxygenase-1 mediates the protective effects of rapamycin in monocrotaline-induced pulmonary hypertension. Lab Investig. 2006;86(1):62–71. https://doi.org/10.1038/labinvest.3700361.

    Article  CAS  PubMed  Google Scholar 

  275. Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11(2):136–40. https://doi.org/10.1038/ni.1831.

    Article  CAS  PubMed  Google Scholar 

  276. Zhou R, Yazdi AS, Menu P, et al. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–6. https://doi.org/10.1038/nature09663.

    Article  CAS  PubMed  Google Scholar 

  277. Zhu W, Woo AYH, Yang D, et al. Activation of CaMKIIδC is a common intermediate of diverse death stimuli-induced heart muscle cell apoptosis. J Biol Chem. 2007;282(14):10833–9. https://doi.org/10.1074/jbc.M611507200.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Recent studies from our lab have been funded by NIH grants R01HL115124, R01129797, and R01HL151187.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Wolin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Katseff, A., Alhawaj, R., Wolin, M.S. (2021). Redox and Inflammatory Signaling, the Unfolded Protein Response, and the Pathogenesis of Pulmonary Hypertension. In: Wang, YX. (eds) Lung Inflammation in Health and Disease, Volume II. Advances in Experimental Medicine and Biology, vol 1304. Springer, Cham. https://doi.org/10.1007/978-3-030-68748-9_17

Download citation

Publish with us

Policies and ethics