Skip to main content

Can GPCRs Be Targeted to Control Inflammation in Asthma?

  • Chapter
  • First Online:
Lung Inflammation in Health and Disease, Volume II

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1304))

Abstract

Historically, the drugs used to manage obstructive lung diseases (OLDs), asthma, and chronic obstructive pulmonary disease (COPD) either (1) directly regulate airway contraction by blocking or relaxing airway smooth muscle (ASM) contraction or (2) indirectly regulate ASM contraction by inhibiting the principal cause of ASM contraction/bronchoconstriction and airway inflammation. To date, these tasks have been respectively assigned to two diverse drug types: agonists/antagonists of G protein-coupled receptors (GPCRs) and inhaled or systemic steroids. These two types of drugs “stay in their lane” with respect to their actions and consequently require the addition of the other drug to effectively manage both inflammation and bronchoconstriction in OLDs. Indeed, it has been speculated that safety issues historically associated with beta-agonist use (beta-agonists activate the beta-2-adrenoceptor (β2AR) on airway smooth muscle (ASM) to provide bronchoprotection/bronchorelaxation) are a function of pro-inflammatory actions of β2AR agonism. Recently, however, previously unappreciated roles of various GPCRs on ASM contractility and on airway inflammation have been elucidated, raising the possibility that novel GPCR ligands targeting these GPCRs can be developed as anti-inflammatory therapeutics. Moreover, we now know that many GPCRs can be “tuned” and not just turned “off” or “on” to specifically activate the beneficial therapeutic signaling a receptor can transduce while avoiding detrimental signaling. Thus, the fledging field of biased agonism pharmacology has the potential to turn the β2AR into an anti-inflammatory facilitator in asthma, possibly reducing or eliminating the need for steroids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AHR:

Airway hyperresponsiveness

ASM:

Airway smooth muscle

AERD:

Aspirin-exacerbated respiratory disease

COPD:

Chronic obstructive pulmonary disease

CaSR:

Calcium-sensing receptor

CysLT:

Cysteinyl leukotriene

IL:

Interleukin

GPCR:

G protein-coupled receptor

OLD:

Obstructive lung diseases

mAChR:

Muscarinic acetylcholine receptor

mPGES-1:

microsomal prostaglandin E synthase-1

LABA:

Long-acting beta-2 agonist

PG:

Prostaglandin

LPS:

Lipopolysaccharide

PAR-2:

Protease-activated receptor-2

PMNT:

Phenylethanolamine-N-mthyltransferase

PKA:

Protein kinase A

SABA:

Short-acting beta-2 agonist

TGFβ1:

Transforming growth factor beta 1

TAS2R:

Type II taste receptors

TNF-α:

Tumor necrosis factor alpha

TRPV4:

Transient receptor potential vanilloid 4

β2AR:

beta-2 adrenoceptor

References

  1. Kaminsky DA. What does airway resistance tell us about lung function? Respir Care. 2012;57(1):85–96. discussion -9

    Article  PubMed  Google Scholar 

  2. Porsbjerg C, Rasmussen L, Nolte H, Backer V. Association of airway hyperresponsiveness with reduced quality of life in patients with moderate to severe asthma. Ann Allergy Asthma Immunol. 2007;98(1):44–50.

    Article  PubMed  Google Scholar 

  3. Cisneros C, Garcia-Rio F, Romera D, Villasante C, Giron R, Ancochea J. Bronchial reactivity indices are determinants of health-related quality of life in patients with stable asthma. Thorax. 2010;65(9):795–800.

    Article  PubMed  Google Scholar 

  4. Wendell SG, Fan H, Zhang C. G protein-coupled receptors in asthma therapy: pharmacology and drug action. Pharmacol Rev. 2020;72(1):1–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Billington CK, Penn RB. Signaling and regulation of G protein-coupled receptors in airway smooth muscle. Respir Res. 2003;4(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Penn RB. Embracing emerging paradigms of G protein-coupled receptor agonism and signaling to address airway smooth muscle pathobiology in asthma. Naunyn Schmiedeberg’s Arch Pharmacol. 2008;378(2):149–69.

    Article  CAS  Google Scholar 

  7. Billington CK, Penn RB. m3 muscarinic acetylcholine receptor regulation in the airway. Am J Respir Cell Mol Biol. 2002;26(3):269–72.

    Article  CAS  PubMed  Google Scholar 

  8. Deshpande DA, Penn RB. Targeting G protein-coupled receptor signaling in asthma. Cell Signal. 2006;18(12):2105–20.

    Article  CAS  PubMed  Google Scholar 

  9. Pera T, Penn RB. Bronchoprotection and bronchorelaxation in asthma: new targets, and new ways to target the old ones. Pharmacol Ther. 2016;164:82–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sharma P, Ghavami S, Stelmack GL, McNeill KD, Mutawe MM, Klonisch T, et al. Beta-Dystroglycan binds caveolin-1 in smooth muscle: a functional role in caveolae distribution and Ca2+ release. J Cell Sci. 2010;123(Pt 18):3061–70.

    Article  CAS  PubMed  Google Scholar 

  11. Pera T, Penn RB. GPCRs in airway smooth muscle function and obstructive lung disease. In: Trebak M, Early S, editors. CRC methods and signaling transduction – experimental approaches for signal transduction of smooth muscles. Boca Raton: CRC Press; 2019. in press.

    Google Scholar 

  12. Wilson CN, Nadeem A, Spina D, Brown R, Page CP, Mustafa SJ. Adenosine receptors and asthma. Handb Exp Pharmacol. 2009;193:329–62.

    Article  CAS  Google Scholar 

  13. Druey KM. Regulation of G-protein-coupled signaling pathways in allergic inflammation. Immunol Res. 2009;43(1–3):62–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Capra V. Molecular and functional aspects of human cysteinyl leukotriene receptors. Pharmacol Res. 2004;50(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  15. Brown RA, Spina D, Page CP. Adenosine receptors and asthma. Br J Pharmacol. 2008;153(Suppl 1):S446–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Safholm J, Manson ML, Bood J, Delin I, Orre AC, Bergman P, et al. Prostaglandin E inhibits mast cell-dependent bronchoconstriction in human small airways through the E prostanoid subtype 2 receptor. J Allergy Clin Immunol. 2015;136(5):1232–9.e1.

    Article  PubMed  CAS  Google Scholar 

  17. Wright D, Sharma P, Ryu MH, Risse PA, Ngo M, Maarsingh H, et al. Models to study airway smooth muscle contraction in vivo, ex vivo and in vitro: implications in understanding asthma. Pulm Pharmacol Ther. 2013;26(1):24–36.

    Article  CAS  PubMed  Google Scholar 

  18. Bonvini SJ, Birrell MA, Dubuis E, Adcock JJ, Wortley MA, Flajolet P, et al. Novel airway smooth muscle-mast cell interactions and a role for the TRPV4-ATP axis in non-atopic asthma. Eur Respir J. 2020;56(1)

    Google Scholar 

  19. Aalbers R, Park HS. Positioning of long-acting muscarinic antagonists in the management of asthma. Allergy Asthma Immunol Res. 2017;9(5):386–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Murphy KR, Chipps BE. Tiotropium in children and adolescents with asthma. Ann Allergy Asthma Immunol. 2020;124(3):267–76.e3.

    Article  PubMed  Google Scholar 

  21. Chari VM, McIvor RA. Tiotropium for the treatment of asthma: patient selection and perspectives. Can Respir J. 2018;2018:3464960.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ohta Y, Hayashi M, Kanemaru T, Abe K, Ito Y, Oike M. Dual modulation of airway smooth muscle contraction by Th2 cytokines via matrix metalloproteinase-1 production. J Immunol. 2008;180(6):4191–9.

    Article  CAS  PubMed  Google Scholar 

  23. Ding S, Zhang J, Yin S, Lu J, Hu M, Du J, et al. Inflammatory cytokines tumour necrosis factor-alpha and interleukin-8 enhance airway smooth muscle contraction by increasing L-type Ca(2+) channel expression. Clin Exp Pharmacol Physiol. 2019;46(1):56–64.

    Article  CAS  PubMed  Google Scholar 

  24. Ojiaku CA, Cao G, Zhu W, Yoo EJ, Shumyatcher M, Himes BE, et al. TGF-beta1 evokes human airway smooth muscle cell shortening and Hyperresponsiveness via Smad3. Am J Respir Cell Mol Biol. 2018;58(5):575–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaur D, Gomez E, Doe C, Berair R, Woodman L, Saunders R, et al. IL-33 drives airway hyper-responsiveness through IL-13-mediated mast cell: airway smooth muscle crosstalk. Allergy. 2015;70(5):556–67.

    Article  CAS  PubMed  Google Scholar 

  26. Amrani Y, Krymskaya V, Maki C, Panettieri RA Jr. Mechanisms underlying TNF-alpha effects on agonist-mediated calcium homeostasis in human airway smooth muscle cells. Am J Phys. 1997;273(5):L1020–8.

    CAS  Google Scholar 

  27. Koopmans T, Anaparti V, Castro-Piedras I, Yarova P, Irechukwu N, Nelson C, et al. Ca2+ handling and sensitivity in airway smooth muscle: emerging concepts for mechanistic understanding and therapeutic targeting. Pulm Pharmacol Ther. 2014;29(2):108–20.

    Article  CAS  PubMed  Google Scholar 

  28. Penn RB, Benovic JL. Regulation of heterotrimeric G protein signaling in airway smooth muscle. Proc Am Thorac Soc. 2008;5(1):47–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev. 2003;83(4):1325–58.

    Article  CAS  PubMed  Google Scholar 

  30. Somlyo AP, Himpens B. Cell calcium and its regulation in smooth muscle. FASEB J. 1989;3(11):2266–76.

    Article  CAS  PubMed  Google Scholar 

  31. Gong MC, Fujihara H, Somlyo AV, Somlyo AP. Translocation of rhoA associated with Ca2+ sensitization of smooth muscle. J Biol Chem. 1997;272(16):10704–9.

    Article  CAS  PubMed  Google Scholar 

  32. Croxton TL, Lande B, Hirshman CA. Role of G proteins in agonist-induced Ca2+ sensitization of tracheal smooth muscle. Am J Phys. 1998;275(4):L748–55.

    CAS  Google Scholar 

  33. Gosens R, Schaafsma D, Grootte Bromhaar MM, Vrugt B, Zaagsma J, Meurs H, et al. Growth factor-induced contraction of human bronchial smooth muscle is Rho-kinase-dependent. Eur J Pharmacol. 2004;494(1):73–6.

    Article  CAS  PubMed  Google Scholar 

  34. Schaafsma D, Boterman M, de Jong AM, Hovens I, Penninks JM, Nelemans SA, et al. Differential Rho-kinase dependency of full and partial muscarinic receptor agonists in airway smooth muscle contraction. Br J Pharmacol. 2006;147(7):737–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Deshpande DA, White TA, Dogan S, Walseth TF, Panettieri RA, Kannan MS. CD38/cyclic ADP-ribose signaling: role in the regulation of calcium homeostasis in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2005;288(5):L773–88.

    Article  CAS  PubMed  Google Scholar 

  36. Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol. 2010;2(11):a003996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gosens R, Zaagsma J, Meurs H, Halayko AJ. Muscarinic receptor signaling in the pathophysiology of asthma and COPD. Respir Res. 2006;7:73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Fryer AD, Jacoby DB. Muscarinic receptors and control of airway smooth muscle. Am J Respir Crit Care Med. 1998;158(5 Pt 3):S154–60.

    Article  CAS  PubMed  Google Scholar 

  39. Coulson FR, Fryer AD. Muscarinic acetylcholine receptors and airway diseases. Pharmacol Ther. 2003;98(1):59–69.

    Article  CAS  PubMed  Google Scholar 

  40. Roffel AF, Davids JH, Elzinga CR, Wolf D, Zaagsma J, Kilbinger H. Characterization of the muscarinic receptor subtype(s) mediating contraction of the Guinea-pig lung strip and inhibition of acetylcholine release in the Guinea-pig trachea with the selective muscarinic receptor antagonist tripitramine. Br J Pharmacol. 1997;122(1):133–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. ten Berge RE, Santing RE, Hamstra JJ, Roffel AF, Zaagsma J. Dysfunction of muscarinic M2 receptors after the early allergic reaction: possible contribution to bronchial hyperresponsiveness in allergic Guinea-pigs. Br J Pharmacol. 1995;114(4):881–7.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Buels KS, Jacoby DB, Fryer AD. Non-bronchodilating mechanisms of tiotropium prevent airway hyperreactivity in a Guinea-pig model of allergic asthma. Br J Pharmacol. 2012;165(5):1501–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Meurs H, Dekkers BG, Maarsingh H, Halayko AJ, Zaagsma J, Gosens R. Muscarinic receptors on airway mesenchymal cells: novel findings for an ancient target. Pulm Pharmacol Ther. 2013;26(1):145–55.

    Article  CAS  PubMed  Google Scholar 

  44. Billington CK, Penn RB, Hall IP. beta2 Agonists. Handb Exp Pharmacol. 2017;237:23–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pera T, Penn RB. Crosstalk between beta-2-adrenoceptor and muscarinic acetylcholine receptors in the airway. Curr Opin Pharmacol. 2014;16:72–81.

    Article  CAS  PubMed  Google Scholar 

  46. Walker JKL, Penn RB, Hanania NA, Dickey BF, Bond RA. New perspectives regarding β(2)-adrenoceptor ligands in the treatment of asthma. Br J Pharmacol. 2011;163(1):18–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boardman C, Chachi L, Gavrila A, Keenan CR, Perry MM, Xia YC, et al. Mechanisms of glucocorticoid action and insensitivity in airways disease. Pulm Pharmacol Ther. 2014;29(2):129–43.

    Article  CAS  PubMed  Google Scholar 

  48. Newton R, Giembycz MA. Understanding how long-acting beta2 -adrenoceptor agonists enhance the clinical efficacy of inhaled corticosteroids in asthma – an update. Br J Pharmacol. 2016;173(24):3405–30.

    Google Scholar 

  49. Chung KF, Caramori G, Adcock IM. Inhaled corticosteroids as combination therapy with beta-adrenergic agonists in airways disease: present and future. Eur J Clin Pharmacol. 2009;65(9):853–71.

    Article  CAS  PubMed  Google Scholar 

  50. Kew KM, Dahri K. Long-acting muscarinic antagonists (LAMA) added to combination long-acting beta2-agonists and inhaled corticosteroids (LABA/ICS) versus LABA/ICS for adults with asthma. Cochrane Database Syst Rev. 2016;1:CD011721.

    Google Scholar 

  51. Barnes PJ. Glucocorticosteroids. Handb Exp Pharmacol. 2017;237:93–115.

    Article  CAS  PubMed  Google Scholar 

  52. Barnes PJ. Mechanisms and resistance in glucocorticoid control of inflammation. J Steroid Biochem Mol Biol. 2010;120(2–3):76–85.

    Article  CAS  PubMed  Google Scholar 

  53. Barnes PJ. Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2013;131(3):636–45.

    Article  CAS  PubMed  Google Scholar 

  54. Adcock IM, Barnes PJ. Molecular mechanisms of corticosteroid resistance. Chest. 2008;134(2):394–401.

    Article  CAS  PubMed  Google Scholar 

  55. Louis R, Schleich F, Barnes PJ. Corticosteroids: still at the frontline in asthma treatment? Clin Chest Med. 2012;33(3):531–41.

    Article  PubMed  Google Scholar 

  56. Barnes PJ. How corticosteroids control inflammation: quintiles prize lecture 2005. Br J Pharmacol. 2006;148(3):245–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Durham A, Adcock IM, Tliba O. Steroid resistance in severe asthma: current mechanisms and future treatment. Curr Pharm Des. 2011;17(7):674–84.

    Article  CAS  PubMed  Google Scholar 

  58. Newton R, Leigh R, Giembycz MA. Pharmacological strategies for improving the efficacy and therapeutic ratio of glucocorticoids in inflammatory lung diseases. Pharmacol Ther. 2010;125(2):286–327.

    Article  CAS  PubMed  Google Scholar 

  59. Barnes PJ. Corticosteroid effects on cell signalling. Eur Respir J. 2006;27(2):413–26.

    Article  CAS  PubMed  Google Scholar 

  60. Barnes PJ. Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2018;18(7):454–66.

    Article  CAS  PubMed  Google Scholar 

  61. Barnes PJ, Adcock IM. Glucocorticoid resistance in inflammatory diseases. Lancet (London, England). 2009;373(9678):1905–17.

    Article  CAS  Google Scholar 

  62. Barnes PJ, Ito K, Adcock IM. Corticosteroid resistance in chronic obstructive pulmonary disease: inactivation of histone deacetylase. Lancet (London, England). 2004;363(9410):731–3.

    Article  CAS  Google Scholar 

  63. Chanez P, Bourdin A, Vachier I, Godard P, Bousquet J, Vignola AM. Effects of inhaled corticosteroids on pathology in asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2004;1(3):184–90.

    Article  CAS  PubMed  Google Scholar 

  64. Ito K, Getting SJ, Charron CE. Mode of glucocorticoid actions in airway disease. ScientificWorldJournal. 2006;6:1750–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Amrani Y, Panettieri RA, Ramos-Ramirez P, Schaafsma D, Kaczmarek K, Tliba O. Important lessons learned from studies on the pharmacology of glucocorticoids in human airway smooth muscle cells: too much of a good thing may be a problem. Pharmacol Ther. 2020;213:107589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Flaster H, Bernhagen J, Calandra T, Bucala R. The macrophage migration inhibitory factor-glucocorticoid dyad: regulation of inflammation and immunity. Mol Endocrinol. 2007;21(6):1267–80.

    Article  CAS  PubMed  Google Scholar 

  67. Cruz-Topete D, Cidlowski JA. One hormone, two actions: anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation. 2015;22(1–2):20–32.

    Article  CAS  PubMed  Google Scholar 

  68. McGregor MC, Krings JG, Nair P, Castro M. Role of biologics in asthma. Am J Respir Crit Care Med. 2019;199(4):433–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rogliani P, Calzetta L, Matera MG, Laitano R, Ritondo BL, Hanania NA, et al. Severe asthma and biological therapy: when, which, and for whom. Pulm Ther. 2020;6(1):47–66.

    Article  PubMed  Google Scholar 

  70. Dean K, Niven R. Asthma phenotypes and Endotypes: implications for personalised therapy. BioDrugs. 2017;31(5):393–408.

    Article  PubMed  Google Scholar 

  71. Anderson WC 3rd, Szefler SJ. Cost-effectiveness and comparative effectiveness of biologic therapy for asthma: to biologic or not to biologic? Ann Allergy Asthma Immunol. 2019;122(4):367–72.

    Article  PubMed  Google Scholar 

  72. Insel PA, Sriram K, Gorr MW, Wiley SZ, Michkov A, Salmeron C, et al. GPCRomics: An approach to discover GPCR drug targets. Trends Pharmacol Sci. 2019;40(6):378–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Workman AD, Palmer JN, Adappa ND, Cohen NA. The role of bitter and sweet taste receptors in upper airway immunity. Curr Allergy Asthma Rep. 2015;15(12):72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Wu SV, Rozengurt N, Yang M, Young SH, Sinnett-Smith J, Rozengurt E. Expression of bitter taste receptors of the T2R family in the gastrointestinal tract and enteroendocrine STC-1 cells. Proc Natl Acad Sci U S A. 2002;99(4):2392–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Luo XC, Chen ZH, Xue JB, Zhao DX, Lu C, Li YH, et al. Infection by the parasitic helminth Trichinella spiralis activates a Tas2r-mediated signaling pathway in intestinal tuft cells. Proc Natl Acad Sci U S A. 2019;116(12):5564–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Deshpande DA, Wang WC, McIlmoyle EL, Robinett KS, Schillinger RM, An SS, et al. Bitter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat Med. 2010;16(11):1299–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. An SS, Liggett SB. Taste and smell GPCRs in the lung: evidence for a previously unrecognized widespread chemosensory system. Cell Signal. 2018;41:82–8.

    Article  CAS  PubMed  Google Scholar 

  78. Sharma P, Panebra A, Pera T, Tiegs BC, Hershfeld A, Kenyon LC, et al. Antimitogenic effect of bitter taste receptor agonists on airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2016;310(4):L365–76.

    Article  PubMed  Google Scholar 

  79. An SS, Wang WC, Koziol-White CJ, Ahn K, Lee DY, Kurten RC, et al. TAS2R activation promotes airway smooth muscle relaxation despite beta(2)-adrenergic receptor tachyphylaxis. Am J Physiol Lung Cell Mol Physiol. 2012;303(4):L304–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang CH, Lifshitz LM, Uy KF, Ikebe M, Fogarty KE, ZhuGe R. The cellular and molecular basis of bitter tastant-induced bronchodilation. PLoS Biol. 2013;11(3):e1001501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tan X, Sanderson MJ. Bitter tasting compounds dilate airways by inhibiting airway smooth muscle calcium oscillations and calcium sensitivity. Br J Pharmacol. 2014;171(3):646–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pulkkinen V, Manson ML, Safholm J, Adner M, Dahlen SE. The bitter taste receptor (TAS2R) agonists denatonium and chloroquine display distinct patterns of relaxation of the Guinea pig trachea. Am J Physiol Lung Cell Mol Physiol. 2012;303(11):L956–66.

    Article  CAS  PubMed  Google Scholar 

  83. Sharma P, Yi R, Nayak AP, Wang N, Tang F, Knight MJ, et al. Bitter taste receptor agonists mitigate features of allergic asthma in mice. Sci Rep. 2017;7:46166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Conaway S Jr, Nayak AP, Deshpande DA. Therapeutic potential and challenges of bitter taste receptors on lung cells. Curr Opin Pharmacol. 2020;51:43–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yarova PL, Stewart AL, Sathish V, Britt RD, Thompson MA, Lowe AP, et al. Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma. Sci Transl Med. 2015;7(284):284ra60.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Penn RB. Physiology. Calcilytics for asthma relief. Science. 2015;348(6233):398–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kawahara K, Hohjoh H, Inazumi T, Tsuchiya S, Sugimoto Y. Prostaglandin E2-induced inflammation: relevance of prostaglandin E receptors. Biochim Biophys Acta. 2015;1851(4):414–21.

    Article  CAS  PubMed  Google Scholar 

  88. Guo M, Pascual RM, Wang S, Fontana MF, Valancius CA, Panettieri RA Jr, et al. Cytokines regulate beta-2-adrenergic receptor responsiveness in airway smooth muscle via multiple PKA- and EP2 receptor-dependent mechanisms. Biochemistry. 2005;44(42):13771–82.

    Article  CAS  PubMed  Google Scholar 

  89. Liu T, Laidlaw TM, Katz HR, Boyce JA. Prostaglandin E2 deficiency causes a phenotype of aspirin sensitivity that depends on platelets and cysteinyl leukotrienes. Proc Natl Acad Sci U S A. 2013;110(42):16987–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Birrell MA, Maher SA, Dekkak B, Jones V, Wong S, Brook P, et al. Anti-inflammatory effects of PGE2 in the lung: role of the EP4 receptor subtype. Thorax. 2015;70(8):740–7.

    Article  PubMed  Google Scholar 

  91. Feng C, Beller EM, Bagga S, Boyce JA. Human mast cells express multiple EP receptors for prostaglandin E2 that differentially modulate activation responses. Blood. 2006;107(8):3243–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lazzeri N, Belvisi MG, Patel HJ, Yacoub MH, Fan Chung K, Mitchell JA. Effects of prostaglandin E2 and cAMP elevating drugs on GM-CSF release by cultured human airway smooth muscle cells. Relevance to asthma therapy. Am J Respir Cell Mol Biol. 2001;24(1):44–8.

    Article  CAS  PubMed  Google Scholar 

  93. Lundequist A, Nallamshetty SN, Xing W, Feng C, Laidlaw TM, Uematsu S, et al. Prostaglandin E(2) exerts homeostatic regulation of pulmonary vascular remodeling in allergic airway inflammation. J Immunol. 2010;184(1):433–41.

    Article  CAS  PubMed  Google Scholar 

  94. Belvisi MG, Saunders M, Yacoub M, Mitchell JA. Expression of cyclo-oxygenase-2 in human airway smooth muscle is associated with profound reductions in cell growth. Br J Pharmacol. 1998;125(5):1102–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Billington CK, Kong KC, Bhattacharyya R, Wedegaertner PB, Panettieri RA, Chan TO, et al. Cooperative regulation of p70S6 kinase by receptor tyrosine kinases and G protein-coupled receptors augments airway smooth muscle growth. Biochemistry. 2005;44:14595–605.

    Article  CAS  PubMed  Google Scholar 

  96. Guo M, Pascual RM, Wang S, Fontana MF, Valancius CA, Panettieri RA, Jr., et al. Cytokines regulate beta-2-adrenergic receptor responsiveness in airway smooth muscle via multiple PKA- and EP2 receptor-dependent mechanisms. Biochemistry 2005;44(42):13771–13782.

    Google Scholar 

  97. Misior AM, Yan H, Pascual RM, Deshpande DA, Panettieri RA Jr, Penn RB. Mitogenic effects of cytokines on smooth muscle are critically dependent on protein kinase A and are unmasked by steroids and cyclooxygenase inhibitors. Mol Pharmacol. 2008;73(2):566–74.

    Article  CAS  PubMed  Google Scholar 

  98. Pascual RM, Billington CK, Hall IP, Panettieri RA Jr, Fish JE, Peters SP, et al. Mechanisms of cytokine effects on G protein-coupled receptor-mediated signaling in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2001;281(6):1425–35.

    Article  Google Scholar 

  99. Yan H, Deshpande DA, Misior AM, Miles MC, Saxena H, Riemer EC, et al. Anti-mitogenic effects of beta-agonists and PGE2 on airway smooth muscle are PKA dependent. FASEB J. 2011;25(1):389–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Birrell MA, Maher SA, Buckley J, Dale N, Bonvini S, Raemdonck K, et al. Selectivity profiling of the novel EP(2) receptor antagonist, PF-04418948, in functional bioassay systems: atypical affinity at the Guinea pig EP(2) receptor. Br J Pharmacol. 2013;168(1):129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Buckley J, Birrell MA, Maher SA, Nials AT, Clarke DL, Belvisi MG. EP(4) receptor as a new target for bronchodilator therapy. Thorax. 2011;66(12):1029–35.

    Article  PubMed  Google Scholar 

  102. Morgan SJ, Deshpande DA, Tiegs BC, Misior AM, Yan H, Hershfeld AV, et al. beta-agonist-mediated relaxation of airway smooth muscle is protein kinase A-dependent. J Biol Chem. 2014;289(33):23065–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tilley SL, Hartney JM, Erikson CJ, Jania C, Nguyen M, Stock J, et al. Receptors and pathways mediating the effects of prostaglandin E2 on airway tone. American journal of physiology lung cellular and molecular. Physiology. 2003;284(4):599–606.

    Google Scholar 

  104. Kawakami Y, Uchiyama K, Irie T, Murao M. Evaluation of aerosols of prostaglandins E1 and E2 as bronchodilators. Eur J Clin Pharmacol. 1973;6(2):127–32.

    Article  CAS  PubMed  Google Scholar 

  105. Melillo E, Woolley KL, Manning PJ, Watson RM, O’Byrne PM. Effect of inhaled PGE2 on exercise-induced bronchoconstriction in asthmatic subjects. Am J Respir Crit Care Med. 1994;149(5):1138–41.

    Article  CAS  PubMed  Google Scholar 

  106. Walters EH, Bevan C, Parrish RW, Davies BH, Smith AP. Time-dependent effect of prostaglandin E2 inhalation on airway responses to bronchoconstrictor agents in normal subjects. Thorax. 1982;37(6):438–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sestini P, Armetti L, Gambaro G, Pieroni MG, Refini RM, Sala A, et al. Inhaled PGE2 prevents aspirin-induced bronchoconstriction and urinary LTE4 excretion in aspirin-sensitive asthma. Am J Respir Crit Care Med. 1996;153(2):572–5.

    Article  CAS  PubMed  Google Scholar 

  108. Szczeklik A, Mastalerz L, Nizankowska E, Cmiel A. Protective and bronchodilator effects of prostaglandin E and salbutamol in aspirin-induced asthma. Am J Respir Crit Care Med. 1996;153(2):567–71.

    Article  CAS  PubMed  Google Scholar 

  109. Pasargiklian M, Bianco S, Allegra L. Clinical, functional and pathogenetic aspects of bronchial reactivity to prostaglandins F2alpha, E1, and E2. Adv Prostaglandin Thromboxane Res. 1976;1:461–75.

    CAS  PubMed  Google Scholar 

  110. Pavord ID, Wong CS, Williams J, Tattersfield AE. Effect of inhaled prostaglandin E2 on allergen-induced asthma. Am Rev Respir Dis. 1993;148(1):87–90.

    Article  CAS  PubMed  Google Scholar 

  111. Manning PJ, Lane CG, O’Byrne PM. The effect of oral prostaglandin E1 on airway responsiveness in asthmatic subjects. Pulm Pharmacol. 1989;2(3):121–4.

    Article  CAS  PubMed  Google Scholar 

  112. Gauvreau GM, Watson RM, O’Byrne PM. Protective effects of inhaled PGE2 on allergen-induced airway responses and airway inflammation. Am J Respir Crit Care Med. 1999;159(1):31–6.

    Article  CAS  PubMed  Google Scholar 

  113. Costello JF, Dunlop LS, Gardiner PJ. Characteristics of prostaglandin induced cough in man. Br J Clin Pharmacol. 1985;20(4):355–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Coleridge HM, Coleridge JC, Ginzel KH, Baker DG, Banzett RB, Morrison MA. Stimulation of ‘irritant’ receptors and afferent C-fibres in the lungs by prostaglandins. Nature. 1976;264(5585):451–3.

    Article  CAS  PubMed  Google Scholar 

  115. Birrell MA, Maher SA, Dekkak B, Jones V, Wong S, Brook P, et al. Anti-inflammatory effects of PGE2 in the lung: role of the EP4 receptor subtype. Thorax. 2015;70(8):740–7.

    Article  PubMed  Google Scholar 

  116. Jones VC, Birrell MA, Maher SA, Griffiths M, Grace M, O’Donnell VB, et al. Role of EP2 and EP4 receptors in airway microvascular leak induced by prostaglandin E2. Br J Pharmacol. 2016;173(6):992–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Maher SA, Birrell MA, Belvisi MG. Prostaglandin E2 mediates cough via the EP3 receptor: implications for future disease therapy. Am J Respir Crit Care Med. 2009;180(10):923–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Buckley J, Birrell MA, Maher SA, Nials AT, Clarke DL, Belvisi MG. EP4 receptor as a new target for bronchodilator therapy. Thorax. 2011;66(12):1029–35.

    Article  PubMed  Google Scholar 

  119. Birrell MA, Maher SA, Buckley J, Dale N, Bonvini S, Raemdonck K, et al. Selectivity profiling of the novel EP2 receptor antagonist, PF-04418948, in functional bioassay systems: atypical affinity at the Guinea pig EP2 receptor. Br J Pharmacol. 2013;168(1):129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Patel HJ, Birrell MA, Crispino N, Hele DJ, Venkatesan P, Barnes PJ, et al. Inhibition of Guinea-pig and human sensory nerve activity and the cough reflex in Guinea-pigs by cannabinoid (CB2) receptor activation. Br J Pharmacol. 2003;140(2):261–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Schuil PJ, Ten Berge M, Van Gelder JM, Graamans K, Huizing EH. Effects of prostaglandins D2 and E2 on ciliary beat frequency of human upper respiratory cilia in vitro. Acta Otolaryngol. 1995;115(3):438–42.

    Article  CAS  PubMed  Google Scholar 

  122. Seto V, Hirota C, Hirota S, Janssen LJ. E-ring Isoprostanes stimulate a Cl conductance in airway epithelium via prostaglandin E2-selective Prostanoid receptors. Am J Respir Cell Mol Biol. 2008;38(1):88–94.

    Article  CAS  PubMed  Google Scholar 

  123. Kook Kim J, Hoon Kim C, Kim K, Jong Jang H, Jik Kim H, Yoon JH. Effects of prostagladin E(2) on gel-forming mucin secretion in normal human nasal epithelial cells. Acta Otolaryngol. 2006;126(2):174–9.

    Article  PubMed  CAS  Google Scholar 

  124. Hattori R, Shimizu S, Majima Y, Shimizu T. EP4 agonist inhibits lipopolysaccharide-induced mucus secretion in airway epithelial cells. Ann Otol Rhinol Laryngol. 2008;117(1):51–8.

    Article  PubMed  Google Scholar 

  125. Hattori R, Shimizu S, Majima Y, Shimizu T. Prostaglandin E2 receptor EP2, EP3, and EP4 agonists inhibit antigen-induced mucus hypersecretion in the nasal epithelium of sensitized rats. Ann Otol Rhinol Laryngol. 2009;118(7):536–41.

    Article  PubMed  Google Scholar 

  126. Tavakoli S, Cowan MJ, Benfield T, Logun C, Shelhamer JH. Prostaglandin E(2)-induced interleukin-6 release by a human airway epithelial cell line. Am J Physiol Lung Cell Mol Physiol. 2001;280(1):L127–33.

    Article  CAS  PubMed  Google Scholar 

  127. Pelletier S, Dube J, Villeneuve A, Gobeil F Jr, Yang Q, Battistini B, et al. Prostaglandin E(2) increases cyclic AMP and inhibits endothelin-1 production/secretion by Guinea-pig tracheal epithelial cells through EP(4) receptors. Br J Pharmacol. 2001;132(5):999–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Li YJ, Kanaji N, Wang XQ, Sato T, Nakanishi M, Kim M, et al. Prostaglandin E2 switches from a stimulator to an inhibitor of cell migration after epithelial-to-mesenchymal transition. Prostaglandins Other Lipid Mediat. 2015;116-117:1–9.

    Article  CAS  PubMed  Google Scholar 

  129. Sturm EM, Schratl P, Schuligoi R, Konya V, Sturm GJ, Lippe IT, et al. Prostaglandin E2 inhibits eosinophil trafficking through E-prostanoid 2 receptors. J Immunol. 2008;181(10):7273–83.

    Article  CAS  PubMed  Google Scholar 

  130. Jarvinen L, Badri L, Wettlaufer S, Ohtsuka T, Standiford TJ, Toews GB, et al. Lung resident mesenchymal stem cells isolated from human lung allografts inhibit T cell proliferation via a soluble mediator. J Immunol. 2008;181(6):4389–96.

    Article  CAS  PubMed  Google Scholar 

  131. Baratelli F, Lin Y, Zhu L, Yang SC, Heuze-Vourc’h N, Zeng G, et al. Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J Immunol. 2005;175(3):1483–90.

    Article  CAS  PubMed  Google Scholar 

  132. Canning BJ, Hmieleski RR, Spannhake EW, Jakab GJ. Ozone reduces murine alveolar and peritoneal macrophage phagocytosis: the role of prostanoids. Am J Phys. 1991;261(4 Pt 1):L277–82.

    CAS  Google Scholar 

  133. Armstrong RA. Investigation of the inhibitory effects of PGE2 and selective EP agonists on chemotaxis of human neutrophils. Br J Pharmacol. 1995;116(7):2903–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Peters T, Henry PJ. Protease-activated receptors and prostaglandins in inflammatory lung disease. Br J Pharmacol. 2009;158(4):1017–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Markovic T, Jakopin Z, Dolenc MS, Mlinaric-Rascan I. Structural features of subtype-selective EP receptor modulators. Drug Discov Today. 2017;22(1):57–71.

    Article  CAS  PubMed  Google Scholar 

  136. Nichols HL, Saffeddine M, Theriot BS, Hegde A, Polley D, El-Mays T, et al. beta-Arrestin-2 mediates the proinflammatory effects of proteinase-activated receptor-2 in the airway. Proc Natl Acad Sci U S A. 2012;109(41):16660–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Asaduzzaman M, Nadeem A, Arizmendi N, Davidson C, Nichols HL, Abel M, et al. Functional inhibition of PAR2 alleviates allergen-induced airway hyperresponsiveness and inflammation. Clin Exp Allergy. 2015;45(12):1844–55.

    Article  CAS  PubMed  Google Scholar 

  138. Yee MC, Nichols HL, Polley D, Saifeddine M, Pal K, Lee K, et al. Protease-activated receptor-2 signaling through beta-arrestin-2 mediates Alternaria alkaline serine protease-induced airway inflammation. Am J Physiol Lung Cell Mol Physiol. 2018;315(6):L1042–L57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chiu JC, Hsu JY, Fu LS, Chu JJ, Chi CS. Comparison of the effects of two long-acting beta2-agonists on cytokine secretion by human airway epithelial cells. J Microbiol Immunol Infect. 2007;40(5):388–94.

    CAS  PubMed  Google Scholar 

  140. Hung CH, Chu YT, Hua YM, Hsu SH, Lin CS, Chang HC, et al. Effects of formoterol and salmeterol on the production of Th1- and Th2-related chemokines by monocytes and bronchial epithelial cells. Eur Respir J. 2008;31(6):1313–21.

    Article  CAS  PubMed  Google Scholar 

  141. Chorley BN, Li Y, Fang S, Park JA, Adler KB. (R)-albuterol elicits antiinflammatory effects in human airway epithelial cells via iNOS. Am J Respir Cell Mol Biol. 2006;34(1):119–27.

    Article  CAS  PubMed  Google Scholar 

  142. Kleine-Tebbe J, Frank G, Josties C, Kunkel G. Influence of salmeterol, a long-acting beta 2-adrenoceptor agonist, on IgE-mediated histamine release from human basophils. J Investig Allergol Clin Immunol. 1994;4(1):12–7.

    CAS  PubMed  Google Scholar 

  143. Chong LK, Cooper E, Vardey CJ, Peachell PT. Salmeterol inhibition of mediator release from human lung mast cells by beta-adrenoceptor-dependent and independent mechanisms. Br J Pharmacol. 1998;123(5):1009–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Lewis RJ, Chachi L, Newby C, Amrani Y, Bradding P. Bidirectional Counterregulation of human lung mast cell and airway smooth muscle beta2 adrenoceptors. J Immunol. 2016;196(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  145. Duffy SM, Cruse G, Lawley WJ, Bradding P. Beta2-adrenoceptor regulation of the K+ channel iKCa1 in human mast cells. FASEB J. 2005;19(8):1006–8.

    Article  CAS  PubMed  Google Scholar 

  146. Roberts JA, Bradding P, Britten KM, Walls AF, Wilson S, Gratziou C, et al. The long-acting beta2-agonist salmeterol xinafoate: effects on airway inflammation in asthma. Eur Respir J. 1999;14(2):275–82.

    Article  CAS  PubMed  Google Scholar 

  147. Green RH, Brightling CE, McKenna S, Hargadon B, Neale N, Parker D, et al. Comparison of asthma treatment given in addition to inhaled corticosteroids on airway inflammation and responsiveness. Eur Respir J. 2006;27(6):1144–51.

    Article  CAS  PubMed  Google Scholar 

  148. Giembycz MA, Kaur M, Leigh R, Newton R. A Holy Grail of asthma management: toward understanding how long-acting beta(2)-adrenoceptor agonists enhance the clinical efficacy of inhaled corticosteroids. Br J Pharmacol. 2008;153(6):1090–104.

    Article  CAS  PubMed  Google Scholar 

  149. Rider CF, Altonsy MO, Mostafa MM, Shah SV, Sasse S, Manson ML, et al. Long-acting beta2-adrenoceptor agonists enhance glucocorticoid receptor (GR)-mediated transcription by gene-specific mechanisms rather than generic effects via GR. Mol Pharmacol. 2018;94(3):1031–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Holden NS, Bell MJ, Rider CF, King EM, Gaunt DD, Leigh R, et al. beta2-adrenoceptor agonist-induced RGS2 expression is a genomic mechanism of bronchoprotection that is enhanced by glucocorticoids. Proc Natl Acad Sci U S A. 2011;108(49):19713–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ortega VE, Peters SP. Beta-2 adrenergic agonists: focus on safety and benefits versus risks. Curr Opin Pharmacol. 2010;10(3):246–53.

    Article  CAS  PubMed  Google Scholar 

  152. Stolley PD. Asthma mortality. Why the United States was spared an epidemic of deaths due to asthma. Am Rev Respir Dis. 1972;105(6):883–90.

    CAS  PubMed  Google Scholar 

  153. Grainger J, Woodman K, Pearce N, Crane J, Burgess C, Keane A, et al. Prescribed fenoterol and death from asthma in New Zealand, 1981-7: a further case-control study. Thorax. 1991;46(2):105–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Crane J, Pearce N, Flatt A, Burgess C, Jackson R, Kwong T, et al. Prescribed fenoterol and death from asthma in New Zealand, 1981-83: case-control study. Lancet (London, England). 1989;1(8644):917–22.

    Article  CAS  Google Scholar 

  155. Pearce N, Grainger J, Atkinson M, Crane J, Burgess C, Culling C, et al. Case-control study of prescribed fenoterol and death from asthma in New Zealand, 1977–81. Thorax. 1990;45(3):170–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pearce N, Beasley R, Crane J, Burgess C, Jackson R. End of the New Zealand asthma mortality epidemic. Lancet (London, England). 1995;345(8941):41–4.

    Article  CAS  Google Scholar 

  157. Pearce N, Burgess C, Crane J, Beasley R. Fenoterol, asthma deaths, and asthma severity. Chest. 1997;112(4):1148–50.

    Article  CAS  PubMed  Google Scholar 

  158. Nelson HS, Weiss ST, Bleecker ER, Yancey SW, Dorinsky PM, Group SS. The salmeterol multicenter asthma research trial: a comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol. Chest. 2006;129(1):15–26.

    Article  CAS  PubMed  Google Scholar 

  159. Pearlman DS, Chervinsky P, LaForce C, Seltzer JM, Southern DL, Kemp JP, et al. A comparison of salmeterol with albuterol in the treatment of mild-to-moderate asthma. N Engl J Med. 1992;327(20):1420–5.

    Article  CAS  PubMed  Google Scholar 

  160. Bhagat R, Kalra S, Swystun VA, Cockcroft DW. Rapid onset of tolerance to the bronchoprotective effect of salmeterol. Chest. 1995;108(5):1235–9.

    Article  CAS  PubMed  Google Scholar 

  161. Newnham DM, Grove A, McDevitt DG, Lipworth BJ. Subsensitivity of bronchodilator and systemic beta 2 adrenoceptor responses after regular twice daily treatment with eformoterol dry powder in asthmatic patients. Thorax. 1995;50(5):497–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Taylor DR. The β-agonist Saga and its clinical relevance: on and on it goes. Am J Respir Crit Care Med. 2009;179(11):976–8.

    Article  PubMed  Google Scholar 

  163. Salpeter S, Buckley N, Ormiston T, Salpeter E. Meta-analysis: effect of long-acting {beta}-agonists on severe asthma exacerbations and asthma-related deaths. Ann Intern Med. 2006;144:904–12.

    Article  CAS  PubMed  Google Scholar 

  164. Sears MR. Adverse effects of [beta]-agonists. J Allergy Clin Immunol. 2002;110(6, Part 2):S322–S8.

    Article  CAS  PubMed  Google Scholar 

  165. Sears MR, Taylor DR, Print CG, Lake DC, Li QQ, Flannery EM, et al. Regular inhaled beta-agonist treatment in bronchial asthma. Lancet (London, England). 1990;336(8728):1391–6.

    Article  CAS  Google Scholar 

  166. Sears MR. Adverse effects of beta-agonists. J Allergy Clin Immunol. 2002;110(6 Suppl):S322–8.

    Article  CAS  PubMed  Google Scholar 

  167. Jeffery PK, Venge P, Gizycki MJ, Egerod I, Dahl R, Faurschou P. Effects of salmeterol on mucosal inflammation in asthma: a placebo-controlled study. Eur Respir J. 2002;20(6):1378–85.

    Article  CAS  PubMed  Google Scholar 

  168. Wallin A, Sandstrom T, Soderberg M, Howarth P, Lundback B, Della-Cioppa G, et al. The effects of regular inhaled formoterol, budesonide, and placebo on mucosal inflammation and clinical indices in mild asthma. Am J Respir Crit Care Med. 1999;159(1):79–86.

    Article  CAS  PubMed  Google Scholar 

  169. Wallin A, Sandstrom T, Cioppa GD, Holgate S, Wilson S. The effects of regular inhaled formoterol and budesonide on preformed Th-2 cytokines in mild asthmatics. Respir Med. 2002;96(12):1021–5.

    Article  CAS  PubMed  Google Scholar 

  170. Martinez-Milla J, Raposeiras-Roubin S, Pascual-Figal DA, Ibanez B. Role of Beta-blockers in cardiovascular disease in 2019. Rev Esp Cardiol (Engl Ed). 2019;72(10):844–52.

    Google Scholar 

  171. Al-Sawalha N, Pokkunuri I, Omoluabi O, Kim H, Thanawala VJ, Hernandez A, et al. Epinephrine activation of the beta2-adrenoceptor is required for IL-13-induced mucin production in human bronchial epithelial cells. PLoS One. 2015;10(7):e0132559.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Callaerts-Vegh Z, Evans KL, Dudekula N, Cuba D, Knoll BJ, Callaerts PF, et al. Effects of acute and chronic administration of beta-adrenoceptor ligands on airway function in a murine model of asthma. Proc Natl Acad Sci U S A. 2004;101(14):4948–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Forkuo GS, Kim H, Thanawala VJ, Al-Sawalha N, Valdez D, Joshi R, et al. PDE4 inhibitors attenuate the asthma phenotype produced by beta-adrenoceptor agonists in PNMT-KO mice. Am J Respir Cell Mol Biol. 2016;55:234–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Nguyen LP, Lin R, Parra S, Omoluabi O, Hanania NA, Tuvim MJ, et al. Beta2-adrenoceptor signaling is required for the development of an asthma phenotype in a murine model. Proc Natl Acad Sci U S A. 2009;106(7):2435–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Nguyen LP, Omoluabi O, Parra S, Frieske JM, Clement C, Ammar-Aouchiche Z, et al. Chronic exposure to beta-blockers attenuates inflammation and mucin content in a murine asthma model. Am J Respir Cell Mol Biol. 2008;38(3):256–62.

    Article  CAS  PubMed  Google Scholar 

  176. Thanawala VJ, Forkuo GS, Al-Sawalha N, Azzegagh Z, Nguyen LP, Eriksen JL, et al. beta2-adrenoceptor agonists are required for development of the asthma phenotype in a murine model. Am J Respir Cell Mol Biol. 2013;48(2):220–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Thanawala VJ, Valdez DJ, Joshi R, Forkuo GS, Parra S, Knoll BJ, et al. β-Blockers have differential effects on the murine asthma phenotype. Br J Pharmacol. 2015;172(20):4833–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hanania NA, Mannava B, Franklin AE, Lipworth BJ, Williamson PA, Garner WJ, et al. Response to salbutamol in patients with mild asthma treated with nadolol. Eur Respir J. 2010;36(4):963–5.

    Article  CAS  PubMed  Google Scholar 

  179. Hanania NA, Singh S, El-Wali R, Flashner M, Franklin AE, Garner WJ, et al. The safety and effects of the beta-blocker, nadolol, in mild asthma: an open-label pilot study. Pulm Pharmacol Ther. 2007;21(1):134–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Urban JD, Clarke WP, von ZM, Nichols DE, Kobilka B, Weinstein H, et al. Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther. 2007;320(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  181. Vaidehi N, Kenakin T. The role of conformational ensembles of seven transmembrane receptors in functional selectivity. Curr Opin Pharmacol. 2010;10(6):775–81.

    Article  CAS  PubMed  Google Scholar 

  182. Wisler JW, DeWire SM, Whalen EJ, Violin JD, Drake MT, Ahn S, et al. A unique mechanism of beta-blocker action: carvedilol stimulates beta-arrestin signaling. Proc Natl Acad Sci U S A. 2007;104(42):16657–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Drake MT, Violin JD, Whalen EJ, Wisler JW, Shenoy SK, Lefkowitz RJ. beta-arrestin-biased agonism at the beta2-adrenergic receptor. J Biol Chem. 2008;283(9):5669–76.

    Article  CAS  PubMed  Google Scholar 

  184. Nguyen LP, Al-Sawalha NA, Parra S, Pokkunuri I, Omoluabi O, Okulate AA, et al. beta2-adrenoceptor signaling in airway epithelial cells promotes eosinophilic inflammation, mucous metaplasia, and airway contractility. Proc Natl Acad Sci U S A. 2017;114(43):E9163–E71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Penn RB, Bond RA, Walker JK. GPCRs and arrestins in airways: implications for asthma. Handb Exp Pharmacol. 2014;219:387–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Dr. Penn is supported by National Institutes of Health (NIH) grants HL58506, AI110007, AI161296, HL136209, HL145392, and HL114471. The authors thank Dr. Richard Bond for permission to utilize previously published figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond B. Penn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, P., Penn, R.B. (2021). Can GPCRs Be Targeted to Control Inflammation in Asthma?. In: Wang, YX. (eds) Lung Inflammation in Health and Disease, Volume II. Advances in Experimental Medicine and Biology, vol 1304. Springer, Cham. https://doi.org/10.1007/978-3-030-68748-9_1

Download citation

Publish with us

Policies and ethics