Skip to main content

Unsupervised Learning of High Dimensional Environmental Data Using Local Fractality Concept

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Abstract

The research deals with an exploration of high dimensional environmental data using unsupervised learning algorithms and the concept of local fractality. The proposed methodology is applied to geospatial data used for the wind speed prediction in a complex mountainous region. It is shown, that the approach provides important additional information on data manifold useful in data analysis, data visualisation and predictive modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kanevski, M., Pozdnoukhov, A., Timonin, V.: Machine Learning of Spatial Environmental Data. Theory, Applications and Software. EPFL Press, Lausanne (2009)

    Google Scholar 

  2. Mandelbrot, B.: The Fractal Geometry of Nature. W. H. Freeman, San Francisco (1982)

    MATH  Google Scholar 

  3. Theiler, J.: Estimating fractal dimension. JOSA A Opt. Soc. Am. 7, 1055–1073 (1990)

    Article  MathSciNet  Google Scholar 

  4. Turcotte, D.L.: Fractals and Chaos in Geology and Geophysics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  5. Camastra, F.: Intrinsic dimension estimation: advances and open problems. Inf. Sci. 328, 26–41 (2015)

    Article  Google Scholar 

  6. Seuront, L.: Fractals and Multifractals in Ecology and Aquatic Science. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  7. Ghanbarian, B., Hunt, A.: Fractals: Concepts and Applications in Geosciences. CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  8. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  9. Hennig, Ch., Meila, M., Murtagh, F., Rocci, R.: Handbook of Cluster Analysis. CRC, Boca Raton, Florida (2015)

    Book  Google Scholar 

  10. Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  11. Golay, J., Kanevski, M.: Unsupervised feature selection based on the Morisita estimator of intrinsic dimension. Knowl.-Based Syst. 135, 125–134 (2017)

    Article  Google Scholar 

  12. Golay, J., Leuenberger, M., Kanevski, M.: Feature selection for regression problems based on the Morisita estimator of intrinsic dimension. Pattern Recogn. 70, 126–138 (2017)

    Article  Google Scholar 

  13. Ripley, B.: Spatial Statistics. Wiley, Hoboken (1981)

    Book  Google Scholar 

  14. Kantz, H., Schreiber, Th.: Nonlinear time Series Analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  15. Vicsek, T.: Mass multifractals. Physica A 168(1), 490–497 (1990)

    Article  MathSciNet  Google Scholar 

  16. Kanevski, M. (ed.): Advanced Mapping of Environmental Data. iSTE & Wiley, London (2008)

    Google Scholar 

  17. Facco, E., d’Errico, M., Rodriguez, A., Laio, A.: Estimating the intrinsic dimension of datasets by a minimal neighborhood information. Sci. Rep. 7, 1–8 (2017)

    Article  Google Scholar 

  18. Carter, K., Raich, R., Hero III, A.: On local intrinsic dimension estimation and its applications. IEEE Trans. Signal Process. 58, 650–663 (2009)

    Article  MathSciNet  Google Scholar 

  19. Houle, M.: Local intrinsic dimensionality I: an extreme-value-theoretic foundation for similarity applications, In: Beecks, C., Borutta, F., Kröger, P., Seidl, T. (eds.) Similarity Search and Applications. International Conference on Similarity Search and Applications, pp. 64–79. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68474-1_5

  20. Allegra, M., Facco, E., Denti, F., et al.: Data segmentation based on the local intrinsic dimension. Sci. Rep. 10, 16449 (2020)

    Article  Google Scholar 

  21. Gionis, A., Hinneburg, A., Papadimitriou, S., Tsaparas, P.: Dimension induced clustering. In: Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 51–60 (2005)

    Google Scholar 

  22. Kanevski, M., Pereira, M.: Local fractality: the case of forest fires in Portugal. Physica A 479(5), 400–410 (2017)

    Article  Google Scholar 

  23. Ramsay, J., Silverman, B.: Functional Data Analysis, 2nd edn. Springer, New York (2009). https://doi.org/10.1007/b98888

    Book  MATH  Google Scholar 

  24. Laib, M., Kanevski, M., FractalTools: R library for estimating fractal dimension. https://github.com/mlaib/FractalTools. Accessed 20 Oct 2020

  25. Robert, S., Foresti, L., Kanevski, M.: Spatial prediction of monthly wind speeds in complex terrain with adaptive general regression neural networks. Int. J. Climatol. 33(7), 1793–1804 (2013)

    Article  Google Scholar 

  26. Golay, J., Kanevski, M.: A new estimator of intrinsic dimension based on the multipoint Morisita index. Pattern Recogn. 48, 4070–4081 (2015)

    Article  Google Scholar 

  27. Charrad, M., Ghazzali, N., Boiteau, V., Niknafs, A.: NbClust: an R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 61(6), 1–36 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The research was partly supported by the Swiss National Research Program “Big Data” (PNR75), project “Hybrid Renewable Energy Potential for the Built Environment using Big Data: Forecasting and Uncertainty Estimation” (no. 4075-40_167285).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Kanevski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kanevski, M., Laib, M. (2021). Unsupervised Learning of High Dimensional Environmental Data Using Local Fractality Concept. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12666. Springer, Cham. https://doi.org/10.1007/978-3-030-68780-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68780-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68779-3

  • Online ISBN: 978-3-030-68780-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics