Skip to main content

Alternative RNA Splicing and Editing: A Functional Molecular Tool Directed to Successful Protein Synthesis in Plants

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 51

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 51))

  • 220 Accesses

Abstract

Intervening sequences interrupt most plant genes. The corresponding mRNA transcripts are required to go through the splicing pathway in order to get rid of the non-functional sequences. Alternative splicing (AS) has come in handy as an important post transcriptional tool that makes multiple mRNA products from single copy of precursor-mRNA molecule in eukaryotic organisms. Computational biology analyses have finally revealed that alternative splicing is not as less frequent in plants as it was thought originally. This mechanism is universal in almost all eukaryotic system for successful gene expression (e.g., plants, mammals, invertebrates etc.) that enhances or improves their coding capacity. The genes that encode functional proteins in a cell, are all spliced by several pathways, amongst which maximum are alternatively spliced. Here we present a brief discussion about the characteristics of various mRNA processing pathways with special reference to alternative splicing in leguminous plants, one of the elaborate and crucial plant families.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghamirzaie D, Nabiyouni M, Fang Y, Klumas C, Heath L, Grene R, Collakova E (2013) Changes in RNA splicing in developing soybean (Glycine max) embryos. Biology (Basel) 2(4):1311–1337

    Google Scholar 

  • Berger F, Hamamura Y, Ingouff M, Higashiyama T (2008) Double fertilization–caught in the act. Trends Plant Sci 13(8):437–443

    Article  CAS  PubMed  Google Scholar 

  • Berget SM, Moore C, Sharp PA (1977) Spliced segments at the 5′ terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci 74(8):3171–3175

    Article  CAS  PubMed  Google Scholar 

  • Blencowe BJ (2006) Alternative splicing: new insights from global analyses. Cell 126(1):37–47

    Article  CAS  PubMed  Google Scholar 

  • Brett D, Pospisil H, Valcárcel J, Reich J, Bork P (2002) Alternative splicing and genome complexity. Nat Genet 30(1):29–30

    Article  CAS  PubMed  Google Scholar 

  • Campbell MA, Haas BJ, Hamilton JP, Mount SM, Buell CR (2006) Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genomics 7(1):327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Kodzius R (2005) The transcriptional landscape of the mammalian genome. Science 309(5740):1559–1563

    Article  CAS  PubMed  Google Scholar 

  • Charlet BN, Singh G, Cooper TA, Logan P (2002) Dynamic antagonism between ETR-3 and PTB regulates cell type-specific alternative splicing. Mol Cell 9(3):649–658

    Article  Google Scholar 

  • Chen FC, Wang SS, Chaw SM, Huang YT, Chuang TJ (2007) Plant gene and alternatively spliced variant annotator. A plant genome annotation pipeline for rice gene and alternatively spliced variant identification with cross-species expressed sequence tag conservation from seven plant species. Plant Physiol 143(3):1086–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chow LT, Gelinas RE, Broker TR, Roberts RJ (1977) An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Clancy S (2008) RNA splicing: introns, exons and spliceosome. Nat Educ 1(1):31

    Google Scholar 

  • Croft L, Schandorff S, Clark F, Burrage K, Arctander P, Mattick JS (2000) ISIS, the intron information system, reveals the high frequency of alternative splicing in the human genome. Nat Genet 24(4):340–341

    Article  CAS  PubMed  Google Scholar 

  • Darnell JE (1978) Implications of RNA-RNA splicing in evolution of eukaryotic cells. Science 202(4374):1257–1260

    Article  CAS  PubMed  Google Scholar 

  • Douglas AG, Wood MJ (2011) RNA splicing: disease and therapy. Brief Funct Genomics 10(3):151–164

    Article  CAS  PubMed  Google Scholar 

  • Gilbert W (1987) The exon theory of genes. Cold Spring Harbor Symp Quantitative Biol 52:901–905

    Article  CAS  Google Scholar 

  • Grabowski PJ (1998) Splicing regulation in neurons: tinkering with cell-specific control. Cell 92(6):709–712

    Article  CAS  PubMed  Google Scholar 

  • Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe WJ (2012) Molecular mechanisms of seed dormancy. Plant Cell Environ 35(10):1769–1786

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Zink D, Korn B, Vingron M, Haas SA (2004) Genome wide identification and classification of alternative splicing based on EST data. Bioinformatics 20(16):2579–2585

    Article  CAS  PubMed  Google Scholar 

  • Hamada S, Ito H, Hiraga S, Inagaki K, Nozaki K, Isono N, Matsui H (2002) Differential characteristics and subcellular localization of two starch-branching enzyme isoforms encoded by a single gene in Phaseolus vulgaris L. J Biol Chem 277(19):16538–16546

    Article  CAS  PubMed  Google Scholar 

  • Hartmann L, Drewe-Boß P, Wießner T, Wagner G, Geue S, Lee HC, Rätsch G (2016) Alternative splicing substantially diversifies the transcriptome during early photomorphogenesis and correlates with the energy availability in Arabidopsis. Plant Cell 28(11):2715–2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hertel KJ (2008) Combinatorial control of exon recognition. J Biol Chem 283(3):1211–1215

    Article  CAS  PubMed  Google Scholar 

  • Iida K, Go M (2006) Survey of conserved alternative splicing events of mRNAs encoding SR proteins in land plants. Mol Biol Evol 23(5):1085–1094

    Article  CAS  PubMed  Google Scholar 

  • Iñiguez LP, Ramírez M, Barbazuk WB, Hernández G (2017) Identification and analysis of alternative splicing events in Phaseolus vulgaris and Glycine max. BMC Genomics 18(1):650

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeong SC, Yang K, Park JY, Han KS, Yu S, Hwang TY, Park YI (2006) Structure, expression, and mapping of two nodule-specific genes identified by mining public soybean EST databases. Gene 383:71–80

    Article  CAS  PubMed  Google Scholar 

  • Jo BS, Choi SS (2015) Introns: the functional benefits of introns in genomes. Genomics Informatics 13(4):112

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalyna M, Lopato S, Voronin V, Barta A (2006) Evolutionary conservation and regulation of particular alternative splicing events in plant SR proteins. Nucleic Acids Res 34(16):4395–4405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kan Z, Gish W (2002) Selecting for functional alternative splices in ESTs. Genome Res 12(12):1837–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kan Z, Garrett-Engele PW, Johnson JM, Castle JC (2005) Evolutionarily conserved and diverged alternative splicing events show different expression and functional profiles. Nucleic Acids Res 33(17):5659–5666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanopka A, Mühlemann O, Akusjärvi G (1996) Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature 381(6582):535–538

    Article  CAS  PubMed  Google Scholar 

  • Kim E, Magen A, Ast G (2007) Different levels of alternative splicing among eukaryotes. Nucleic Acids Res 35(1):125–131

    Article  CAS  PubMed  Google Scholar 

  • Lander ES (2001) Initial sequencing and analysis of the human genome. International human genome sequencing consortium. Nature 409(6822):860–921

    Article  CAS  PubMed  Google Scholar 

  • Lareau LF, Green RE, Bhatnagar RS, Brenner SE (2004) The evolving roles of alternative splicing. Curr Opin Struct Biol 14(3):273–282

    Article  CAS  PubMed  Google Scholar 

  • Lewis BP, Green RE, Brenner SE (2003) Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci U S A 100(1):189–192

    Article  CAS  PubMed  Google Scholar 

  • Mancini E, Sanchez SE, Romanowski A, Schlaen RG, Sanchez-Lamas M, Cerdan PD, Yanovsky MJ (2016) Acute effects of light on alternative splicing in light-grown plants. Photochem Photobiol 92(1):126–133

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Contreras R, Fisette JF, Nasim FUH, Madden R, Cordeau M, Chabot B (2006) Intronic binding sites for hnRNP A/B and hnRNP F/H proteins stimulate pre-mRNA splicing. PLoS Biol 4(2):e21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mironov AA, Fickett JW, Gelfand MS (1999) Frequent alternative splicing of human genes. Genome Res 9(12):1288–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modrek B, Lee C (2002) A genomic view of alternative splicing. Nat Genet 30(1):13–19

    Article  CAS  PubMed  Google Scholar 

  • Modrek B, Lee CJ (2003) Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat Genet 34(2):177–180

    Article  CAS  PubMed  Google Scholar 

  • Modrek B, Resch A, Grasso C, Lee C (2001) Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res 29(13):2850–2859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narsai R, Gouil Q, Secco D, Srivastava A, Karpievitch YV, Liew LC, Whelan J (2017) Extensive transcriptomic and epigenomic remodelling occurs during Arabidopsis thaliana germination. Genome Biol 18(1):172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palovaara J, de Zeeuw T, Weijers D (2016) Tissue and organ initiation in the plant embryo: a first time for everything. Annu Rev Cell Dev Biol 32:47–75

    Article  CAS  PubMed  Google Scholar 

  • Penfield S, Josse EM, Halliday KJ (2010) A role for an alternative splice variant of PIF6 in the control of Arabidopsis primary seed dormancy. Plant Mol Biol 73(1–2):89–95

    Article  CAS  PubMed  Google Scholar 

  • Raghavan V (2003) Some reflections on double fertilization, from its discovery to the present. New Phytol 159(3):565–583

    Article  CAS  Google Scholar 

  • Ramos J, Clemente MR, Naya L, Loscos J, Pérez-Rontomé C, Sato S, Becana M (2007) Phytochelatin synthases of the model legume Lotus japonicas: a small multigene family with differential response to cadmium and alternatively spliced variants. Plant Physiol 143(3):1110–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy SW, Gilbert W (2006) The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 7(3):211–221

    Article  PubMed  Google Scholar 

  • Schmitz-Linneweber C, Williams-Carrier RE, Williams-Voelker PM, Kroeger TS, Vichas A, Barkan A (2006) A pentatricopeptide repeat protein facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. Plant Cell 18(10):2650–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shikata H, Hanada K, Ushijima T, Nakashima M, Suzuki Y, Matsushita T (2014) Phytochrome controls alternative splicing to mediate light responses in Arabidopsis. Proc Natl Acad Sci 111(52):18781–18786

    Article  CAS  PubMed  Google Scholar 

  • Smith CW, Valcárcel J (2000) Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem Sci 25(8):381–388

    Article  CAS  PubMed  Google Scholar 

  • Sorek R, Ast G (2003) Intronic sequences flanking alternatively spliced exons are conserved between human and mouse. Genome Res 13(7):1631–1637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorek R, Shamir R, Ast G (2004) How prevalent is functional alternative splicing in the human genome? Trends Genet 20(2):68–71

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan A, Jiménez-Gómez JM, Fornara F, Soppe WJ, Brambilla V (2016) Alternative splicing enhances transcriptome complexity in desiccating seeds. J Integr Plant Biol 58(12):947–958

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Xiao H (2015) Identification of alternative splicing events by RNA sequencing in early growth tomato fruits. BMC Genomics 16(948):1–13

    Google Scholar 

  • Szakonyi D, Duque P (2018) Alternative splicing as a regulator of early plant development. Front Plant Sci 9:1174

    Article  PubMed  PubMed Central  Google Scholar 

  • Szczyglowski K, Kapranov P, Hamburger D, de Bruijn FJ (1998) The Lotus japonicus LjNOD70 nodulin gene encodes a protein with similarities to transporters. Plant Mol Biol 37(4):651–661

    Article  CAS  PubMed  Google Scholar 

  • Tazi J, Bakkour N, Stamm S (2009) Alternative splicing and disease. Biochim Biophys Acta 1792(1):14–26

    Article  CAS  PubMed  Google Scholar 

  • Thatcher SR, Danilevskaya ON, Meng X, Beatty M, Zastrow-Hayes G, Harris C, Li B (2016) Genome-wide analysis of alternative splicing during development and drought stress in maize. Plant Physiol 170(1):586–599

    Article  CAS  PubMed  Google Scholar 

  • Wang BB, Brendel V (2006) Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci 103(18):7175–7180

    Article  CAS  PubMed  Google Scholar 

  • Wang BB, O’Toole M, Brendel V, Young ND (2008) Cross-species EST alignments reveal novel and conserved alternative splicing events in legumes. BMC Plant Biol 8:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang PL, Bao Y, Yee MC, Barrett SP, Hogan GJ, Olsen MN, Salzman J (2014a) Circular RNA is expressed across the eukaryotic tree of life. PLoS One 9(6):e90859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Liu J, Huang BO, Xu YM, Li J, Huang LF, Wang XZ (2014b) Mechanism of alternative splicing and its regulation. Biomed Rep 3(2):152–158

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson JD, Baker TA, Bell SP, Gann A, Levine M, Losick R (2014) Molecular biology of the gene, 7th edn. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  • Wu SH (2014) Gene expression regulation in photomorphogenesis from the perspective of the central dogma. Annu Rev Plant Biol 65:311–333

    Article  CAS  PubMed  Google Scholar 

  • Young ND, Cannon SB, Sato S, Kim D, Cook DR, Town CD, Tabata S (2005) Sequencing the genespaces of Medicago truncatula and Lotus japonicus. Plant Physiol 137(4):1174–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Zhou C, Ye L, Dong J, Xu H, Cai L, Wei L (2003) Database and analyses of known alternatively spliced genes in plants. Genomics 82(6):584–595

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dass, R.S., Thorat, P., Mallick, R. (2021). Alternative RNA Splicing and Editing: A Functional Molecular Tool Directed to Successful Protein Synthesis in Plants. In: Guleria, P., Kumar, V., Lichtfouse, E. (eds) Sustainable Agriculture Reviews 51. Sustainable Agriculture Reviews, vol 51. Springer, Cham. https://doi.org/10.1007/978-3-030-68828-8_5

Download citation

Publish with us

Policies and ethics