Skip to main content

Quantum Robust Fitting

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Abstract

Many computer vision applications need to recover structure from imperfect measurements of the real world. The task is often solved by robustly fitting a geometric model onto noisy and outlier-contaminated data. However, recent theoretical analyses indicate that many commonly used formulations of robust fitting in computer vision are not amenable to tractable solution and approximation. In this paper, we explore the usage of quantum computers for robust fitting. To do so, we examine and establish the practical usefulness of a robust fitting formulation inspired by the analysis of monotone Boolean functions. We then investigate a quantum algorithm to solve the formulation and analyse the computational speed-up possible over the classical algorithm. Our work thus proposes one of the first quantum treatments of robust fitting for computer vision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartnett, K.: Q&A with Judea Pearl: to build truly intelligent machines, teach them cause and effect. (https://www.quantamagazine.org/to-build-truly-intelligent-machines-teach-them-cause-and-effect-20180515/. Accessed 30 May 2020

  2. Kanatani, K., Sugaya, Y., Kanazawa, Y.: Ellipse fitting for computer vision: implementation and applications. Synth. Lect. Comput. Vis. 6(1), 1–141 (2016)

    Google Scholar 

  3. Chin, T.J., Suter, D.: The maximum consensus problem: recent algorithmic advances. Synth. Lect. Comput. Vis. 7(2), 1–194 (2017)

    Google Scholar 

  4. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  5. Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.M.: USAC: a universal framework for random sample consensus. IEEE Trans. Pattern Anal. Mach. Intell. 35, 2022–2038 (2013)

    Article  Google Scholar 

  6. Chin, T.J., Cai, Z., Neumann, F.: Robust fitting in computer vision: easy or hard? In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  7. Bernholt, T.: Robust estimators are hard to compute. Technical Report 52, Technische Universität Dortmund (2005)

    Google Scholar 

  8. Touzmas, V., Antonante, P., Carlone, L.: Outlier-robust spatial perception: hardness, general-purpose algorithms, and guarantees. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2019)

    Google Scholar 

  9. Suter, D., Tennakoon, R., Zhang, E., Chin, T.J., Bab-Hadiashar, A.: Monotone boolean functions, feasibility/infeasibility, LP-type problems and MaxCon (2020)

    Google Scholar 

  10. Neven, H., Rose, G., Macready, W.G.: Image recognition with an adiabatic quantum computer I. Mapping to quadratic unconstrained binary optimization. arXiv:0804.4457 (2008)

  11. Nguyen, N.T.T., Kenyon, G.T.: Image classification using quantum inference on the D-Wave 2X. arXiv:1905.13215 (2019)

  12. Golyanik, V., Theobalt, C.: A quantum computational approach to correspondence problems on point sets. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  13. Kahl, F., Hartley, R.: Multiple-view geometry under the l\(_\infty \)-norm. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1603–1617 (2008)

    Article  Google Scholar 

  14. Eppstein, D.: Quasiconvex programming. Comb. Comput. Geom. 25 (2005)

    Google Scholar 

  15. Chin, T.J., Purkait, P., Eriksson, A., Suter, D.: Efficient globally optimal consensus maximisation with tree search. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  16. Cheney, E.W.: Introduction to Approximation Theory. McGraw-Hill, United States (1966)

    MATH  Google Scholar 

  17. Chum, O., Matas, J.: Matching with PROSAC - progressive sample consensus. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (2005)

    Google Scholar 

  18. Amenta, N., Bern, M., Eppstein, D.: Optimal point placement for mesh smoothing. J. Algorithms 30, 302–322 (1999)

    Article  MathSciNet  Google Scholar 

  19. Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming. Algorithmica 16, 498–516 (1996)

    Article  MathSciNet  Google Scholar 

  20. (https://en.wikipedia.org/wiki/Hoeffding%27s_inequality)

  21. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26, 1411–1473 (1997)

    Article  MathSciNet  Google Scholar 

  22. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  23. Ambainis, A.: Understanding quantum algorithms via query complexity. Int. Congr. Math. 4, 3283–3304 (2018)

    MATH  Google Scholar 

  24. Floess, D.F., Andersson, E., Hillery, M.: Quantum algorithms for testing Boolean functions. Math. Struc. Comput. Sci. 23, 386–398 (2013)

    Article  MathSciNet  Google Scholar 

  25. Li, H., Yang, L.: A quantum algorithm for approximating the influences of boolean functions and its applications. Quantum Inf. Process. 14, 1787–1797 (2015)

    Article  MathSciNet  Google Scholar 

  26. Rieffel, E., Polak, W.: Quantum Computing: A Gentle Introduction. The MIT Press, United States (2014)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tat-Jun Chin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chin, TJ., Suter, D., Ch’ng, SF., Quach, J. (2021). Quantum Robust Fitting. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12622. Springer, Cham. https://doi.org/10.1007/978-3-030-69525-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69525-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69524-8

  • Online ISBN: 978-3-030-69525-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics