Skip to main content

Branch Interaction Network for Person Re-identification

  • Conference paper
  • First Online:
Computer Vision – ACCV 2020 (ACCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12624))

Included in the following conference series:

  • 793 Accesses

Abstract

Most existing Person Re-identification (Re-ID) models aim to learn global and multi-granularity local features by designing a multi-branch structure and performing a uniform partition with the various number of divisions in different branches. However, the uniform partition is likely to separate meaningful regions in a single branch, and interaction between various branches disappeared after the split. In this paper, we propose the Branch Interaction Network (BIN), a multi-branch network architecture with three branches for learning coarse-to-fine features. Instead of traditional uniform partition, a horizontal overlapped division is employed to make sure essential local areas between adjacent parts are covered. Additionally, a novel attention module called Inter-Branch Attention Module (IBAM) is introduced to model contextual dependencies in the spatial domain across branches and learn better shared and specific representations for each branch. Extensive experiments are conducted on three mainstream datasets, i.e., DukeMTMC-reID, Market-1501 and CUHK03, showing the effectiveness of our approach, which outperforms the state-of-the-art methods. For instance, we achieve a top result of 90.50% mAP and 92.06% rank-1 accuracy on DukeMTMC-reID with re-ranking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S.: Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline). In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 480–496 (2018)

    Google Scholar 

  2. Wang, G., Yuan, Y., Chen, X., Li, J., Zhou, X.: Learning discriminative features with multiple granularities for person re-identification. In: 2018 ACM Multimedia Conference on Multimedia Conference, pp. 274–282. ACM (2018)

    Google Scholar 

  3. Li, W., Zhu, X., Gong, S.: Person re-identification by deep joint learning of multi-loss classification. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 2194–2200. AAAI Press (2017)

    Google Scholar 

  4. Fu, Y., et al.: Horizontal pyramid matching for person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8295–8302 (2019)

    Google Scholar 

  5. Zhou, K., Yang, Y., Cavallaro, A., Xiang, T.: Omni-scale feature learning for person re-identification. arXiv preprint arXiv:1905.00953 (2019)

  6. Liu, J., Zha, Z.J., Xie, H., Xiong, Z., Zhang, Y.: Ca 3 net: Contextual-attentional attribute-appearance network for person re-identification. In: 2018 ACM Multimedia Conference on Multimedia Conference, pp. 737–745. ACM (2018)

    Google Scholar 

  7. Su, C., Li, J., Zhang, S., Xing, J., Gao, W., Tian, Q.: Pose-driven deep convolutional model for person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3960–3969 (2017)

    Google Scholar 

  8. Wang, C., Zhang, Q., Huang, C., Liu, W., Wang, X.: Mancs: A multi-task attentional network with curriculum sampling for person re-identification. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 365–381 (2018)

    Google Scholar 

  9. Li, W., Zhu, X., Gong, S.: Harmonious attention network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2285–2294 (2018)

    Google Scholar 

  10. Tay, C.P., Roy, S., Yap, K.H.: Aanet: ttribute attention network for person re-identifications. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7134–7143 (2019)

    Google Scholar 

  11. Han, K., Guo, J., Zhang, C., Zhu, M.: Attribute-aware attention model for fine-grained representation learning. In: 2018 ACM Multimedia Conference on Multimedia Conference, pp. 2040–2048. ACM (2018)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)

  14. Chen, Y., Zhao, C., Sun, T.: Single image based metric learning via overlapping blocks model for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  15. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  16. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  17. Fu, Z., Chen, Y., Yong, H., Jiang, R., Zhang, L., Hua, X.S.: Foreground gating and background refining network for surveillance object detection. IEEE Trans. Image Process. 28, 6077–6090 (2019)

    Article  MathSciNet  Google Scholar 

  18. Si, J., et al.: Dual attention matching network for context-aware feature sequence based person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5363–5372 (2018)

    Google Scholar 

  19. Cao, J., Li, Y., Zhang, Z.: Partially shared multi-task convolutional neural network with local constraint for face attribute learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4290–4299 (2018)

    Google Scholar 

  20. Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 17–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_2

    Chapter  Google Scholar 

  21. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1116–1124 (2015)

    Google Scholar 

  22. Li, W., Zhao, R., Xiao, T., Wang, X.: Deepreid: deep filter pairing neural network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 152–159 (2014)

    Google Scholar 

  23. Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: AAA, vol. I, pp. 13001–13008 (2020)

    Google Scholar 

  24. Chang, X., Hospedales, T.M., Xiang, T.: Multi-level factorisation net for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2109–2118 (2018)

    Google Scholar 

  25. Saquib Sarfraz, M., Schumann, A., Eberle, A., Stiefelhagen, R.: A pose-sensitive embedding for person re-identification with expanded cross neighborhood re-ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 420–429 (2018)

    Google Scholar 

  26. Yang, W., Huang, H., Zhang, Z., Chen, X., Huang, K., Zhang, S.: Towards rich feature discovery with class activation maps augmentation for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1389–1398 (2019)

    Google Scholar 

  27. Song, C., Huang, Y., Ouyang, W., Wang, L.: Mask-guided contrastive attention model for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1179–1188 (2018)

    Google Scholar 

  28. Zheng, M., Karanam, S., Wu, Z., Radke, R.J.: Re-identification with consistent attentive siamese networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5735–5744 (2019)

    Google Scholar 

  29. Zhong, Z., Zheng, L., Cao, D., Li, S.: Re-ranking person re-identification with k-reciprocal encoding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1318–1327 (2017)

    Google Scholar 

Download references

Acknowledgments

This paper was supported by National Key R&D Program of China (2019YFC1521204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, Z., Huang, J. (2021). Branch Interaction Network for Person Re-identification. In: Ishikawa, H., Liu, CL., Pajdla, T., Shi, J. (eds) Computer Vision – ACCV 2020. ACCV 2020. Lecture Notes in Computer Science(), vol 12624. Springer, Cham. https://doi.org/10.1007/978-3-030-69535-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69535-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69534-7

  • Online ISBN: 978-3-030-69535-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics