Skip to main content

Polymeric Biocomposites from Renewable and Sustainable Natural Resources

  • Chapter
  • First Online:
Polymeric and Natural Composites

Abstract

The use of polymeric composite materials from renewable biomass has acquired great importance in different and varied fields. Moreover, its application in the biomedical applications has found a fast development in recent years. In this context, this chapter is focused on the use of biocomposites in tissue engineering and analytical applications. The studied materials include polysaccharides such as chitosan, cellulose, and alginate, as well as polyhydroxyalcanoates as matrixes, and fillers like nanoparticles, carbon nanotubes or polymers, among other combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALP:

Alkaline phospatase

BTE:

Bone tissue engineering

CCNWs:

Carboxymethylcelullose nanowhiskers

CPAs:

Chlorophenoxy acids

CNCs:

Cellulose nanocrystals

CQ:

Cissus quadrangularis

CS:

Chitosan

DSPE:

Dispersive solid phase extraction

EDS:

Energy –dispersive X-ray spectroscopy

ECHNN:

Electrospun cellulose/nano-HA nanocomposite nanofibers

GC-MS:

Gas chromatography–mass spectrometry

Gel:

Gelatin

GO:

Grapheme oxide

HAp:

Hydroxyapatite

hASCs:

Human adipose derived stem cells

HECA:

Hydroxyethyl cellulose acetate

IgG:

Immunoglobulin

MCNPs:

Magnetic cellulose nanoparticles

MNPs:

Magnetic nanoparticles

MOFs:

Magnetic organic frameworks

mcl-PHAs:

Medium chain length PHAs

MNPs@X:

Modified magnetic nanoparticles

MSPE:

Magnetic solid phase extraction

MWCNTs:

Multi-walled carbon nanotubes

NBGC:

Bioactive glass ceramic nanoparticles

NC:

Nanocellulose

NHAp:

Nanohydroxyapatite

PAHs:

Polycyclic aromatic hydrocarbons

PAEs:

Phthalate esters

PCBs:

Polychlorinated biphenyls

PCL:

Poly(ε-caprolactone)

PDA:

Polydopamine

PEG:

Poly(ethylene glycol)

PHAs:

Polyhydroxyalkanoates

P3HB:

Poly(3-hydroxybutyrate)

P4HO:

Poly(4-hydroxyoctanoate)

P3HHx:

Poly(3-hydroxyhexanoate)

P(LcG):

Poly(lactic-co-glycolic acid)

PPD:

poly(m-phenylenediamine)

PP:

Polypropylene

PVA:

Poly(vinyl alcohol)

SBF:

Simulated body fluid

SWCNT:

Single-walled carbon nanotubes

SBSDME:

Stir bar-sorptive dispersive microextraction

SPE:

Solid phase extraction

TE:

Tissue engineering

XRD:

X-ray diffraction

References

  1. Wei L, McDonald AG (2016) A review on grafting of biofibers for biocomposites. Materials (Basel) 9:303–326

    Article  Google Scholar 

  2. Mülhaupt R (2013) Green polymer chemistry and bio-based plastics: Dreams and reality. Macromol Chem Phys 214:159–174

    Article  Google Scholar 

  3. Vilaplana F, Strömberg E, Karlsson S (2010) Environmental and resource aspects of sustainable biocomposites. Polym Degrad Stab 95:2147–2161

    Article  Google Scholar 

  4. Rothon R (2017) Fillers for polymer applications. Rothon R (ed). Springer International Publishing, 489 p

    Google Scholar 

  5. Yunus Basha R, Sampath SK, Doble M (2015) Design of biocomposite materials for bone tissue regeneration. Mater Sci Eng C 57:452–463

    Article  Google Scholar 

  6. Quesada HB, de Araújo TP, Vareschini DT, de Barros MASD, Gomes RG, Bergamasco R (2020) Chitosan, alginate and other macromolecules as activated carbon immobilizing agents: a review on composite adsorbents for the removal of water contaminants. Int J Biol Macromol 164:2535–2549

    Article  Google Scholar 

  7. Płotka-Wasylka J, Szczepańska N, de la Guardia M, Namieśnik J (2015) Miniaturized solid-phase extraction techniques. TrAC—Trends Anal Chem 73:19–38

    Article  Google Scholar 

  8. Dimpe KM, Nomngongo PN (2016) Current sample preparation methodologies for analysis of emerging pollutants in different environmental matrices. TrAC—Trends Anal Chem 82:199–207

    Article  Google Scholar 

  9. Tan SC, Lee HK (2019) A hydrogel composite prepared from alginate, an amino-functionalized metal-organic framework of type MIL-101(Cr), and magnetite nanoparticles for magnetic solid-phase extraction and UHPLC-MS/MS analysis of polar chlorophenoxy acid herbicides. Microchim Acta 186:545–556

    Article  Google Scholar 

  10. Tasmia Shah J, Jan MR (2020) Eco-friendly alginate encapsulated magnetic graphene oxide beads for solid phase microextraction of endocrine disrupting compounds from water samples. Ecotoxicol Environ Saf 190: 110099

    Google Scholar 

  11. Zhang S, Niu H, Cai Y, Shi Y (2010) Barium alginate caged Fe3O4@C18 magnetic nanoparticles for the pre-concentration of polycyclic aromatic hydrocarbons and phthalate esters from environmental water samples. Anal Chim Acta 665:167–175

    Article  Google Scholar 

  12. Bunkoed O, Nurerk P, Wannapob R, Kanatharana P (2016) Polypyrrole-coated alginate/magnetite nanoparticles composite sorbent for the extraction of endocrine-disrupting compounds. J Sep Sci 39:3602–3609

    Article  Google Scholar 

  13. Manousi N, Rosenberg E, Deliyanni EA, Zachariadis GA (2020) Sample preparation using graphene-oxide-derived nanomaterials for the extraction of metals. Molecules 25:2411–2436

    Article  Google Scholar 

  14. Zare M, Ramezani Z, Rahbar N (2016) Development of zirconia nanoparticles-decorated calcium alginate hydrogel fibers for extraction of organophosphorous pesticides from water and juice samples: facile synthesis and application with elimination of matrix effects. J Chromatogr A 1473:28–37

    Article  Google Scholar 

  15. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM (1999) Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402:276–279

    Article  Google Scholar 

  16. Gangu KK, Maddila S, Mukkamala SB, Jonnalagadda SB (2016) A review on contemporary metal-organic framework materials. Inorganica Chim Acta 446:61–74

    Article  Google Scholar 

  17. Castilhos NDB, Sampaio NMFM, da Silva BC, Riegel-Vidotti IC, Grassi MT, Silva BJG (2017) Physical-chemical characteristics and potential use of a novel alginate/zein hydrogel as the sorption phase for polar organic compounds. Carbohydr Polym 174:507–516

    Article  Google Scholar 

  18. Ruiz-Palomero C, Soriano ML, Valcárcel M (2017) Nanocellulose as analyte and analytical tool: opportunities and challenges. TrAC Trends Anal Chem 87:1–18

    Article  Google Scholar 

  19. Ruiz-Palomero C, Soriano ML, Valcárcel M (2015) β-Cyclodextrin decorated nanocellulose: a smart approach towards the selective fluorimetric determination of danofloxacin in milk samples. Analyst 140:3431–3438

    Article  Google Scholar 

  20. Anirudhan TS, Rejeena SR (2013) Poly(methacrylic acid-co-vinyl sulfonic acid)-grafted-magnetite/ nanocellulose superabsorbent composite for the selective recovery and separation of immunoglobulin from aqueous solutions. Sep Purif Technol 119:82–93

    Article  Google Scholar 

  21. Abujaber F, Guzmán Bernardo FJ, Rodríguez Martín-Doimeadios RC (2019) Magnetic cellulose nanoparticles as sorbents for stir bar-sorptive dispersive microextraction of polychlorinated biphenyls in juice samples. Talanta 201:266–270

    Article  Google Scholar 

  22. Nurerk P, Bunkoed W, Kanatharana P, Bunkoed O (2018) A miniaturized solid-phase extraction adsorbent of calix[4]arene-functionalized graphene oxide/polydopamine-coated cellulose acetate for the analysis of aflatoxins in corn. J Sep Sci 41:3892–3901

    Article  Google Scholar 

  23. Xu JJ, Ye LH, Cao J, Cao W, Zhang QY (2015) Ultramicro chitosan-assisted in-syringe dispersive micro-solid-phase extraction for flavonols from healthcare tea by ultra-high performance liquid chromatography. J Chromatogr A 1409:11–18

    Article  Google Scholar 

  24. Guo H, Xue L, Yao S, Cai X, Qian J (2017) Rhein functionalized magnetic chitosan as a selective solid phase extraction for determination isoflavones in soymilk. Carbohydr Polym 165:96–102

    Article  Google Scholar 

  25. Seol Y-J, Lee J-Y, Park Y-J, Lee Y-M, Ku Y, Rhyu I-C et al (2004) Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett 26: 1037–1041

    Google Scholar 

  26. Razavi N, Sarafraz YA (2017) New application of chitosan-grafted polyaniline in dispersive solid-phase extraction for the separation and determination of phthalate esters in milk using high-performance liquid chromatography. J Sep Sci 40:1739–1746

    Article  Google Scholar 

  27. Safi K, Kant K, Bramhecha I, Mathur P, Sheikh J (2020) Multifunctional modification of cotton using layer-by-layer finishing with chitosan, sodium lignin sulphonate and boric acid. Int J Biol Macromol 158:903–910

    Article  Google Scholar 

  28. Ahmed ABA, Adel M, Karimi P, Peidayesh M (2014) Pharmaceutical, cosmeceutical, and traditional applications of marine carbohydrates. In: Kim S-K (ed) Advances in food and nutrition research. Academic Press, pp 197–220

    Google Scholar 

  29. de Oliveira SA, Nunes de Macedo JR, Rosa D dos S (2019) Eco-efficiency of poly (lactic acid)-Starch-Cotton composite with high natural cotton fiber content: environmental and functional value. J Clean Prod 217: 32–41

    Google Scholar 

  30. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524

    Article  Google Scholar 

  31. Deepthi S, Venkatesan J, Kim S-K, Bumgardner JD, Jayakumar R (2016) An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int J Biol Macromol 93:1338–1353

    Article  Google Scholar 

  32. Chen F-M, Liu X (2016) Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 53:86–168

    Article  Google Scholar 

  33. Aranaz I, Mengibar M, Harris R, Panos I, Miralles B, Acosta N et al (2009) Functional characterization of chitin and chitosan. Curr Chem Biol 3:203–230

    Google Scholar 

  34. Di Martino A, Sittinger M, Risbud MV (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26:5983–5990

    Article  Google Scholar 

  35. Bano I, Arshad M, Yasin T, Ghauri MA, Younus M (2017) Chitosan: a potential biopolymer for wound management. Int J Biol Macromol 102:380–383

    Article  Google Scholar 

  36. Lu Z, Gao J, He Q, Wu J, Liang D, Yang H et al (2017) Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydr Polym 156:460–469

    Article  Google Scholar 

  37. Nehra P, Chauhan R, Garg N, Verma K (2018) Antibacterial and antifungal activity of chitosan coated iron oxide nanoparticles. Br J Biomed Sci 75:13–18

    Article  Google Scholar 

  38. Singh R, Shitiz K, Singh A (2017) Chitin and chitosan: biopolymers for wound management. Int Wound J 14:1276–1289

    Article  Google Scholar 

  39. Cano L, Pollet E, Avérous L, Tercjak A (2017) Effect of TiO2 nanoparticles on the properties of thermoplastic chitosan-based nano-biocomposites obtained by mechanical kneading. Compos Part A Appl Sci Manuf 93:33–40

    Article  Google Scholar 

  40. Chen J, Pan P, Zhang Y, Zhong S, Zhang Q (2015) Preparation of chitosan/nano hydroxyapatite organic–inorganic hybrid microspheres for bone repair. Colloids Surf B Biointerfaces 134:401–407

    Article  Google Scholar 

  41. Kassem A, Ayoub GM, Malaeb L (2019) Antibacterial activity of chitosan nano-composites and carbon nanotubes: a review. Sci Total Environ 668:566–576

    Article  Google Scholar 

  42. Saravanan S, Leena RS, Selvamurugan N (2016) Chitosan based biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 93:1354–1365

    Article  Google Scholar 

  43. Wang W, Yeung KWK (2017) Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater 2:224–247

    Article  Google Scholar 

  44. Zhang D, Wu X, Chen J, Lin K (2018) The development of collagen based composite scaffolds for bone regeneration. Bioact Mater 3:129–138

    Article  Google Scholar 

  45. Gaspar A, Moldovan L, Constantin D, Stanciuc AM, Sarbu Boeti PM, Efrimescu IC (2011) Collagen-based scaffolds for skin tissue engineering. J Med Life 4:172–177

    Google Scholar 

  46. Doillon CJ, Watsky MA, Hakim M, Wang J, Munger R, Laycock N et al (2003) A collagen-based scaffold for a tissue engineered human cornea: physical and physiological properties. Int J Artif Organs 26:764–773

    Article  Google Scholar 

  47. Davis GE (1992) Affinity of integrins for damaged extracellular matrix: αvβ3 binds to denatured collagen type I through RGD sites. Biochem Biophys Res Commun 182:1025–1031

    Article  Google Scholar 

  48. Kaczmarek B, Sionkowska A, Osyczka AM (2018) Physicochemical properties of scaffolds based on mixtures of chitosan, collagen and glycosaminoglycans with nano-hydroxyapatite addition. Int J Biol Macromol 118:1880–1883

    Article  Google Scholar 

  49. Sionkowska A, Kaczmarek B (2017) Preparation and characterization of composites based on the blends of collagen, chitosan and hyaluronic acid with nano-hydroxyapatite. Int J Biol Macromol 102:658–666

    Article  Google Scholar 

  50. Venkatesan J, Kim S-K (2010) Chitosan composites for bone tissue engineering—an overview. Mar Drugs 8:2252–2266

    Article  Google Scholar 

  51. Yamaguchi I, Iizuka S, Osaka A, Monma H, Tanaka J (2003) The effect of citric acid addition on chitosan/hydroxyapatite composites. Colloids Surf A Physicochem Eng Asp 214:111–118

    Article  Google Scholar 

  52. Fraga AF, Filho E de A, Rigo EC da S, Boschi AO (2011) Synthesis of chitosan/hydroxyapatite membranes coated with hydroxycarbonate apatite for guided tissue regeneration purposes. Appl Surf Sci 257: 3888–3892

    Google Scholar 

  53. Depan D, Venkata Surya PKC, Girase B, Misra RDK (2011) Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering. Acta Biomater 7:2163–2175

    Article  Google Scholar 

  54. Li X, Nan K, Shi S, Chen H (2012) Preparation and characterization of nano-hydroxyapatite/chitosan cross-linking composite membrane intended for tissue engineering. Int J Biol Macromol 50:43–49

    Article  Google Scholar 

  55. Atak BH, Buyuk B, Huysal M, Isik S, Senel M, Metzger W et al (2017) Preparation and characterization of amine functional nano-hydroxyapatite/chitosan bionanocomposite for bone tissue engineering applications. Carbohydr Polym 164:200–213

    Article  Google Scholar 

  56. Shakir M, Zia I, Rehman A, Ullah R (2018) Fabrication and characterization of nanoengineered biocompatible n-HA/chitosan-tamarind seed polysaccharide: bio-inspired nanocomposites for bone tissue engineering. Int J Biol Macromol 111:903–916

    Article  Google Scholar 

  57. Shakir M, Jolly R, Khan MS, Iram N, Khan HM (2015) Nano-hydroxyapatite/chitosan–starch nanocomposite as a novel bone construct: synthesis and in vitro studies. Int J Biol Macromol 80: 282–292

    Google Scholar 

  58. Ranganathan S, Balagangadharan K, Selvamurugan N (2019) Chitosan and gelatin-based electrospun fibers for bone tissue engineering. Int J Biol Macromol 133:354–364

    Article  Google Scholar 

  59. Christy PN, Basha SK, Kumari VS, Bashir AKH, Maaza M, Kaviyarasu K et al (2020) Biopolymeric nanocomposite scaffolds for bone tissue engineering applications—a review. J Drug Deliv Sci Technol 55: 101452

    Google Scholar 

  60. Neacsu IA, Serban AP, Nicoara AI, Trusca R, Ene VL, Iordache F (2020) Biomimetic composite scaffold based on naturally derived biomaterials. Polymers (Basel) 12:1161–1180

    Article  Google Scholar 

  61. Aycan D, Alemdar N (2018) Development of pH-responsive chitosan-based hydrogel modified with bone ash for controlled release of amoxicillin. Carbohydr Polym 184:401–407

    Article  Google Scholar 

  62. Galeano S, García-Lorenzo ML (2014) Bone mineral change during experimental calcination: an X-ray diffraction study. J Forensic Sci 59:1602–1606

    Article  Google Scholar 

  63. Mohd Pu’ad NAS, Koshy P, Abdullah HZ, Idris MI, Lee TC (2019) Syntheses of hydroxyapatite from natural sources. Heliyon 5: e01588

    Google Scholar 

  64. Gelli R, Ridi F, Baglioni P (2019) The importance of being amorphous: calcium and magnesium phosphates in the human body. Adv Colloid Interface Sci 269:219–235

    Article  Google Scholar 

  65. Saravanan S, Nethala S, Pattnaik S, Tripathi A, Moorthi A, Selvamurugan N (2011) Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol 49:188–193

    Article  Google Scholar 

  66. Wu Y, Ying Y, Liu Y, Zhang H, Huang J (2018) Preparation of chitosan/poly vinyl alcohol films and their inhibition of biofilm formation against Pseudomonas aeruginosa PAO1. Int J Biol Macromol 118:2131–2137

    Article  Google Scholar 

  67. Shen K, Hu Q, Chen L, Shen J (2010) Preparation of chitosan bicomponent nanofibers filled with hydroxyapatite nanoparticles via electrospinning. J Appl Polym Sci 115:2683–2690

    Article  Google Scholar 

  68. Epure V, Griffon M, Pollet E, Avérous L (2011) Structure and properties of glycerol-plasticized chitosan obtained by mechanical kneading. Carbohydr Polym 83:947–952

    Article  Google Scholar 

  69. Suyatma NE, Tighzert L, Copinet A, Coma V (2005) Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films. J Agric Food Chem 53:3950–3957

    Article  Google Scholar 

  70. Fundo JF, Carvalho A, Feio G, Silva CLM, Quintas MAC (2015) Relationship between molecular mobility, microstructure and functional properties in chitosan/glycerol films. Innov Food Sci Emerg Technol 28: 81–85

    Google Scholar 

  71. Sanyang M, Sapuan S, Jawaid M, Ishak M, Sahari J (2015) Effect of Plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (Arenga pinnata) Starch. Polymers (Basel) 7:1106–1124

    Article  Google Scholar 

  72. Huang C, Zhu J, Chen L, Li L, Li X (2014) Structural changes and plasticizer migration of starch-based food packaging material contacting with milk during microwave heating. Food Control 36:55–62

    Article  Google Scholar 

  73. Li X, He Y, Huang C, Zhu J, Lin AH-M, Chen L et al (2016) Inhibition of plasticizer migration from packaging to foods during microwave heating by controlling the esterified starch film structure. Food Control 66: 130–136

    Google Scholar 

  74. Chen S-H, Tsao C-T, Chang C-H, Lai Y-T, Wu M-F, Liu Z-W et al (2013) Synthesis and characterization of reinforced poly(ethylene glycol)/chitosan hydrogel as wound dressing materials. Macromol Mater Eng 298:429–438

    Article  Google Scholar 

  75. Jiang X, Zhao Y, Hou L (2016) The effect of glycerol on properties of chitosan/poly(vinyl alcohol) films with AlCl3·6H2O aqueous solution as the solvent for chitosan. Carbohydr Polym 135:191–198

    Article  Google Scholar 

  76. Shojaee Kang Sofla M, Mortazavi S, Seyfi J (2020) Preparation and characterization of polyvinyl alcohol/chitosan blends plasticized and compatibilized by glycerol/polyethylene glycol. Carbohydr Polym 232: 115784

    Google Scholar 

  77. Shirwaikar A, Khan S, Malini S (2003) Antiosteoporotic effect of ethanol extract of Cissus quadrangularis Linn. on ovariectomized rat. J Ethnopharmacol 89: 245–250

    Google Scholar 

  78. Kumar TS, Jegadeesan M (2006) Physico-chemical profile of cissus quadrangularis L. Var-I in different soils. Anc Sci Life 26:50–58

    Google Scholar 

  79. Madan CLNSL (1859) A pharmacognostical study of the stem of Cissus quadrangularis Linn. J Sci Ind Res (India) 18:253–255

    Google Scholar 

  80. Mehta M, Kaur N, Bhutani KK (2001) Determination of marker constituents from Cissus quadrangularis Linn. and their quantitation by HPTLC and HPLC. Phytochem Anal 12: 91–95

    Google Scholar 

  81. Potu BK, Bhat KM, Rao MS, Nampurath GK, Chamallamudi MR, Nayak SR et al (2009) Petroleum ether extract of Cissus quadrangularis (Linn.) enhances bone marrow mesenchymal stem cell proliferation and facilitates osteoblastogenesis. Clinics 64: 993–998s

    Google Scholar 

  82. Tamburaci S, Kimna C, Tihminlioglu F (2018) Novel phytochemical Cissus quadrangularis extract–loaded chitosan/Na-carboxymethyl cellulose–based scaffolds for bone regeneration. J Bioact Compat Polym 33:629–646

    Article  Google Scholar 

  83. Soumya S, Sajesh KM, Jayakumar R, Nair SV, Chennazhi KP (2012) Development of a phytochemical scaffold for bone tissue engineering using Cissus quadrangularis extract. Carbohydr Polym 87:1787–1795

    Article  Google Scholar 

  84. Thongtham N, Chai-in P, Unger O, Boonrungsiman S, Suwantong O (2020) Fabrication of chitosan/collagen/hydroxyapatite scaffolds with encapsulated Cissus quadrangularis extract. Polym Adv Technol 31:1496–1507

    Article  Google Scholar 

  85. Iqbal M, Zafar N, Fessi H, Elaissari A (2015) Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm 496:173–190

    Article  Google Scholar 

  86. Teekamp N, Duque LF, Frijlink HW, Hinrichs WL, Olinga P (2015) Production methods and stabilization strategies for polymer-based nanoparticles and microparticles for parenteral delivery of peptides and proteins. Expert Opin Drug Deliv 12:1311–1331

    Article  Google Scholar 

  87. Giovino C, Ayensu I, Tetteh J, Boateng JS (2012) Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Int J Pharm 428:143–151

    Article  Google Scholar 

  88. Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromol 15:2327–2346

    Article  Google Scholar 

  89. Armiento AR, Stoddart MJ, Alini M, Eglin D (2018) Biomaterials for articular cartilage tissue engineering: learning from biology. Acta Biomater 65:1–20

    Article  Google Scholar 

  90. Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N et al (2005) Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering applications. Biomacromol 6:1961–1976

    Article  Google Scholar 

  91. Azzaoui K, Mejdoubi E, Lamhamdi A, Zaoui S, Berrabah M, Elidrissi A et al (2015) Structure and properties of hydroxyapatite/hydroxyethyl cellulose acetate composite films. Carbohydr Polym 115:170–176

    Article  Google Scholar 

  92. Ao C, Niu Y, Zhang X, He X, Zhang W, Lu C (2017) Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering. Int J Biol Macromol 97:568–573

    Article  Google Scholar 

  93. Zhang C, Salick MR, Cordie TM, Ellingham T, Dan Y, Turng L-S (2015) Incorporation of poly(ethylene glycol) grafted cellulose nanocrystals in poly(lactic acid) electrospun nanocomposite fibers as potential scaffolds for bone tissue engineering. Mater Sci Eng C 49:463–471

    Article  Google Scholar 

  94. Si J, Cui Z, Wang Q, Liu Q, Liu C (2016) Biomimetic composite scaffolds based on mineralization of hydroxyapatite on electrospun poly(ɛ-caprolactone)/nanocellulose fibers. Carbohydr Polym 143:270–278

    Article  Google Scholar 

  95. Heinemann S, Heinemann C, Bernhardt R, Reinstorf A, Nies B, Meyer M et al (2009) Bioactive silica–collagen composite xerogels modified by calcium phosphate phases with adjustable mechanical properties for bone replacement. Acta Biomater 5:1979–1990

    Article  Google Scholar 

  96. Wan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ et al (2007) Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci Eng C 27:855–864

    Article  Google Scholar 

  97. Fragal EH, Cellet TSP, Fragal VH, Witt MA, Companhoni MVP, Ueda-Nakamura T et al (2019) Biomimetic nanocomposite based on hydroxyapatite mineralization over chemically modified cellulose nanowhiskers: An active platform for osteoblast proliferation. Int J Biol Macromol 125:133–142

    Article  Google Scholar 

  98. Fragal EH, Cellet TSP, Fragal VH, Companhoni MVP, Ueda-Nakamura T, Muniz EC et al (2016) Hybrid materials for bone tissue engineering from biomimetic growth of hydroxiapatite on cellulose nanowhiskers. Carbohydr Polym 152:734–746

    Article  Google Scholar 

  99. González M, Hernández E, Ascencio JA, Pacheco F, Pacheco S, Rodríguez R (2003) Hydroxyapatite crystals grown on a cellulose matrix using titanium alkoxide as a coupling agent. J Mater Chem 13:2948–2951

    Article  Google Scholar 

  100. Wei G, Ma PX (2004) Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25:4749–4757

    Article  Google Scholar 

  101. Sato K, Nakajima T, Anzai J (2012) Preparation of poly(methyl methacrylate) microcapsules by in situ polymerization on the surface of calcium carbonate particles. J Colloid Interface Sci 387:123–126

    Article  Google Scholar 

  102. Huang C, Fang G, Zhao Y, Bhagia S, Meng X, Yong Q et al (2019) Bio-inspired nanocomposite by layer-by-layer coating of chitosan/hyaluronic acid multilayers on a hard nanocellulose-hydroxyapatite matrix. Carbohydr Polym 222: 115036

    Google Scholar 

  103. Lemoigne M (1923) Production of β-hydroxybutyric acid by certain bacteria of the B. subtilis group. Comptes rendus l’Académie des Sci 176: 1761–1763

    Google Scholar 

  104. Lemoigne M (1924) Production of β-hydroxybutyric acid by a bacterial process. Comptes rendus l’Académie des Sci 178:253–256

    Google Scholar 

  105. Lemoigne M (1925) The origin of β-hydroxybutyric acid obtained by bacterial process. Comptes rendus l’Académie des Sci 180:1539–1541

    Google Scholar 

  106. Lemoigne M (1926) Products of dehydration and of polymerization of β-hydroxybutyric acid. Bull Soc Chim Biol (Paris) 8:770–782

    Google Scholar 

  107. Lemoigne M (1927) Chemical origin of the products of dehydration and of polymerization of β-hydroxybutyric acid. Hydroxybutyric fermentation. Bull Soc Chim Biol (Paris) 9: 446–453

    Google Scholar 

  108. Shabina M, Afzal M, Hameed S (2015) Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: production, biocompatibility, biodegradation, physical properties and applications. Green Chem Lett Rev 8: 56–77

    Google Scholar 

  109. Lee SY (2000) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    Article  Google Scholar 

  110. Lee SY (1996) Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol 14:431–438

    Article  Google Scholar 

  111. Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromol 6:1–8

    Article  Google Scholar 

  112. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    Article  Google Scholar 

  113. Ray S, Kalia VC (2017) Biomedical applications of polyhydroxyalkanoates. Indian J Microbiol 57:261–269

    Article  Google Scholar 

  114. Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53:5–21

    Article  Google Scholar 

  115. Dufresne A, Vincendon M (2000) Poly(3-hydroxybutyrate) and poly(3-hydroxyoctanoate) blends: morphology and mechanical behavior. Macromolecules 33:2998–3008

    Article  Google Scholar 

  116. McClain MA, Clements IP, Shafer RH, Bellamkonda RV, LaPlaca MC, Allen MG (2011) Highly-compliant, microcable neuroelectrodes fabricated from thin-film gold and PDMS. Biomed Microdevices 13:361–373

    Article  Google Scholar 

  117. Biran R, Martin DC, Tresco PA (2007) The brain tissue response to implanted silicon microelectrode arrays is increased when the device is tethered to the skull. J Biomed Mater Res Part A 82A:169–178

    Article  Google Scholar 

  118. Asplund M, Nyberg T, Inganäs O (2010) Electroactive polymers for neural interfaces. Polym Chem 1:1374

    Article  Google Scholar 

  119. Apollo NV, Maturana MI, Tong W, Nayagam DAX, Shivdasani MN, Foroughi J et al (2015) Soft, flexible freestanding neural stimulation and recording electrodes fabricated from reduced graphene oxide. Adv Funct Mater 25:3551–3559

    Article  Google Scholar 

  120. Vallejo-Giraldo C, Kelly A, Biggs MJP (2014) Biofunctionalisation of electrically conducting polymers. Drug Discov Today 19:88–94

    Article  Google Scholar 

  121. Thelin J, Jörntell H, Psouni E, Garwicz M, Schouenborg J, Danielsen N et al (2011) Implant size and fixation mode strongly influence tissue reactions in the CNS. PLoS One 6: e16267

    Google Scholar 

  122. Keohan F, Wei XF, Wongsarnpigoon A, Lazaro E, Darga JE, Grill WM (2007) Fabrication and evaluation of conductive elastomer electrodes for neural stimulation. J Biomater Sci Polym Ed 18:1057–1073

    Article  Google Scholar 

  123. Vallejo-Giraldo C, Pugliese E, Larrañaga A, Fernandez-Yague MA, Britton JJ, Trotier A et al (2016) Polyhydroxyalkanoate/carbon nanotube nanocomposites: flexible electrically conducting elastomers for neural applications. Nanomedicine 11:2547–2563

    Article  Google Scholar 

  124. Khodagholy D, Doublet T, Gurfinkel M, Quilichini P, Ismailova E, Leleux P et al (2011) Highly conformable conducting polymer electrodes for in vivo recordings. Adv Mater 23:H268–H272

    Article  Google Scholar 

  125. Misra SK, Valappil SP, Roy I, Boccaccini AR (2006) Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications. Biomacromol 7:2249–2258

    Article  Google Scholar 

  126. Barrett JSF, Abdala AA, Srienc F (2014) Poly(hydroxyalkanoate) elastomers and their graphene nanocomposites. Macromolecules 47:3926–3941

    Article  Google Scholar 

  127. Cellot G, Toma FM, Kasap Varley Z, Laishram J, Villari A, Quintana M et al (2011) Carbon nanotube scaffolds tune synaptic strength in cultured neural circuits: novel frontiers in nanomaterial-tissue interactions. J Neurosci 31:12945–12953

    Article  Google Scholar 

  128. Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M et al (2005) Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett 5:1107–1110

    Article  Google Scholar 

  129. Mazzatenta A, Giugliano M, Campidelli S, Gambazzi L, Businaro L, Markram H et al (2007) Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits. J Neurosci 27:6931–6936

    Article  Google Scholar 

  130. Hore MJA, Laradji M (2008) Prospects of nanorods as an emulsifying agent of immiscible blends. J Chem Phys 128: 054901

    Google Scholar 

  131. Russell RA, Foster LJR, Holden PJ (2018) Carbon nanotube mediated miscibility of polyhydroxyalkanoate blends and chemical imaging using deuterium-labelled poly(3-hydroxyoctanoate). Eur Polym J 105:150–157

    Article  Google Scholar 

  132. Russell RA, Darwish TA, Puskar L, Martin DE, Holden PJ, Foster LJR (2014) Deuterated polymers for probing phase separation using infrared microspectroscopy. Biomacromol 15:644–649

    Article  Google Scholar 

  133. Hassarati RT, Foster LJR, Green RA (2016) Influence of biphasic stimulation on olfactory ensheathing cells for neuroprosthetic devices. Front Neurosci 10:article 432

    Google Scholar 

  134. Gentile P, Chiono V, Carmagnola I, Hatton P (2014) An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 15:3640–3659

    Article  Google Scholar 

  135. Baliga A, Borkar S (2016) A review of the 3D designing of scaffolds for tissue engineering with a focus on keratin protein. Preprints 2016090091

    Google Scholar 

  136. Rouse JG, Van Dyke ME (2010) A review of Keratin-based biomaterials for biomedical applications. Materials (Basel) 3:999–1014

    Article  Google Scholar 

  137. Verma V, Verma P, Ray P, Ray AR (2008) Preparation of scaffolds from human hair proteins for tissue-engineering applications. Biomed Mater 3: 025007

    Google Scholar 

  138. Reichl S (2009) Films based on human hair keratin as substrates for cell culture and tissue engineering. Biomaterials 30:6854–6866

    Article  Google Scholar 

  139. Hartrianti P, Ling L, Goh LMM, Ow KSA, Samsonraj RM, Sow WT et al (2015) Modulating mesenchymal stem cell behavior using human hair Keratin-coated surfaces. Stem Cells Int Article ID 752424

    Google Scholar 

  140. Borrelli M, Joepen N, Reichl S, Finis D, Schoppe M, Geerling G et al (2015) Keratin films for ocular surface reconstruction: evaluation of biocompatibility in an in-vivo model. Biomaterials 42:112–120

    Article  Google Scholar 

  141. Passipieri JA, Baker HB, Siriwardane M, Ellenburg MD, Vadhavkar M, Saul JM et al (2017) Keratin hydrogel enhances In Vivo skeletal muscle function in a rat model of volumetric muscle loss. Tissue Eng Part A 23:556–571

    Article  Google Scholar 

  142. Hajiali H, Karbasi S, Hosseinalipour M, Rezaie HR (2010) Preparation of a novel biodegradable nanocomposite scaffold based on poly (3-hydroxybutyrate)/bioglass nanoparticles for bone tissue engineering. J Mater Sci Mater Med 21:2125–2132

    Article  Google Scholar 

  143. Sadeghi D, Karbasi S, Razavi S, Mohammadi S, Shokrgozar MA, Bonakdar S (2016) Electrospun poly(hydroxybutyrate)/chitosan blend fibrous scaffolds for cartilage tissue engineering. J Appl Polym Sci 133:44171

    Article  Google Scholar 

  144. Karbasi MZS (2018) Evaluation of the effects of multiwalled carbon nanotubes on electrospun poly(3-hydroxybutirate) scaffold for tissue engineering applications. J Porous Mater 25: 259–272

    Google Scholar 

  145. Haider A, Haider S, Kang I-K (2018) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11:1165–1188

    Article  Google Scholar 

  146. Cheng Y, Ramos D, Lee P, Liang D, Yu X, Kumbar SG (2014) Collagen functionalized bioactive nanofiber matrices for osteogenic differentiation of mesenchymal stem cells: bone tissue engineering. J Biomed Nanotechnol 10:287–298

    Article  Google Scholar 

  147. Ahmed FE, Lalia BS, Hashaikeh R (2015) A review on electrospinning for membrane fabrication: challenges and applications. Desalination 356:15–30

    Article  Google Scholar 

  148. Khorshidi S, Solouk A, Mirzadeh H, Mazinani S, Lagaron JM, Sharifi S et al (2016) A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med 10:715–738

    Article  Google Scholar 

  149. Zarei M, Tanideh N, Zare S, Aslani FS, Koohi-Hosseinabadi O, Rowshanghias A et al (2020) Electrospun poly(3-hydroxybutyrate)/chicken feather-derived keratin scaffolds: Fabrication, in vitro and in vivo biocompatibility evaluation. J Biomater Appl 34:741–752

    Article  Google Scholar 

  150. Pheng Low S, Ying Liu J, Wu P (2009) Sustainable facilities: Institutional compliance and the Sino-Singapore Tianjin Eco-city Project. Facilities 27:368–386

    Article  Google Scholar 

  151. Christian SJ, Billington SL (2011) Mechanical response of PHB- and cellulose acetate natural fiber-reinforced composites for construction applications. Compos Part B Eng 42:1920–1928

    Article  Google Scholar 

  152. Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979

    Article  Google Scholar 

  153. Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and biocomposites. In: Mohanty AK, Misra M, Drzal LT (eds). CRC Press, Boca Raton, FL, 896 p

    Google Scholar 

  154. Jonh M, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364

    Article  Google Scholar 

  155. Dicker MPM, Duckworth PF, Baker AB, Francois G, Hazzard MK, Weaver PM (2014) Green composites: a review of material attributes and complementary applications. Compos Part A Appl Sci Manuf 56:280–289

    Article  Google Scholar 

  156. Yan L, Chouw N (2013) Experimental study of flax FRP tube encased coir fibre reinforced concrete composite column. Constr Build Mater 40:1118–1127

    Article  Google Scholar 

  157. Yan L, Chouw N, Jayaraman K (2014) Effect of column parameters on flax FRP confined coir fibre reinforced concrete. Constr Build Mater 55:299–312

    Article  Google Scholar 

  158. Yan L, Su S, Chouw N (2015) Microstructure, flexural properties and durability of coir fibre reinforced concrete beams externally strengthened with flax FRP composites. Compos Part B Eng 80:343–354

    Article  Google Scholar 

  159. CoDyre L, Mak K, Fam A (2018) Flexural and axial behaviour of sandwich panels with bio-based flax fibre-reinforced polymer skins and various foam core densities. J Sandw Struct Mater 20:595–616

    Article  Google Scholar 

  160. Mak K, Fam A, MacDougall C (2015) Flexural behavior of sandwich panels with bio-FRP skins made of flax fibers and epoxidized pine-oil resin. J Compos Constr 19:04015005

    Article  Google Scholar 

  161. Yan L, Chouw N, Huang L, Kasal B (2016) Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Constr Build Mater 112:168–182

    Article  Google Scholar 

  162. Sealy C (2015) How green are celluose-reinforced composites? Mater Today 18:531

    Article  Google Scholar 

  163. Abdul HPS, Jawaid M, Hassan A, Paridah MT, Zaido A (2012) Oil palm biomass fibres and recent advancement in oil palm biomass fibres based hybrid biocomposites. In: Hu N (ed) Composites and their applications. InTech

    Google Scholar 

  164. Hervy M, Evangelisti S, Lettieri P, Lee K-Y (2015) Life cycle assessment of nanocellulose-reinforced advanced fibre composites. Compos Sci Technol 118:154–162

    Article  Google Scholar 

  165. Wool RP (2005) Polymers and composite resins from plan oils. In: Wool R, Sun XS (eds) Bio-based polymers and composites. Elsevier, pp 56–113

    Google Scholar 

  166. Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    Article  Google Scholar 

  167. Fowler PA, Hughes JM, Elias RM (2006) Biocomposites: technology, environmental credentials and market forces. J Sci Food Agric 86:1781–1789

    Article  Google Scholar 

  168. Terzopoulou ZN, Papageorgiou GZ, Papadopoulou E, Athanassiadou E, Alexopoulou E, Bikiaris DN (2015) Green composites prepared from aliphatic polyesters and bast fibers. Ind Crops Prod 68:60–79

    Article  Google Scholar 

  169. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26

    Article  Google Scholar 

  170. Wong S, Shanks R, Hodzic A (2002) Properties of poly(3-hydroxybutyric acid) composites with flax fibres modified by plasticiser absorption. Macromol Mater Eng 287:647–655

    Article  Google Scholar 

  171. Yan L, Chouw N (2014) Natural FRP tube confined fibre reinforced concrete under pure axial compression: a comparison with glass/carbon FRP. Thin-Walled Struct 82:159–169

    Article  Google Scholar 

  172. Yan L, Chouw N, Jayaraman K (2014) Effect of triggering and polyurethane foam-filler on axial crushing of natural flax/epoxy composite tubes. Mater Des 56:528–541

    Article  Google Scholar 

  173. Foulk J, Akin D, Dodd R, Ulven C (2011) Production of flax fibers for biocomposites. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin, pp 61–95

    Google Scholar 

  174. Foulk JA, Rho D, Alcock MM, Ulven CA, Huo S (2011) Modifications caused by enzyme-retting and their effect on composite performance. Adv Mater Sci Eng Article ID 179023

    Google Scholar 

  175. Akil HM, Omar MF, Mazuki AAM, Safiee S, Ishak ZAM, Abu BA (2011) Kenaf fiber reinforced composites: a review. Mater Des 32:4107–4121

    Article  Google Scholar 

  176. Karger-Kocsis J (2000) Reinforced polymer blends. In: Paul DR CBB (eds) Polymer blends. Wiley, NY, USA, pp 395–428

    Google Scholar 

  177. Fu S-Y, Xu G, Mai Y-W (2002) On the elastic modulus of hybrid particle/short-fiber/polymer composites. Compos Part B Eng 33:291–299

    Article  Google Scholar 

  178. Jawaid M, Abdul Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86:1–18

    Article  Google Scholar 

  179. Jawaid M, Abdul Khalil HPS, Abu BA (2011) Woven hybrid composites: tensile and flexural properties of oil palm-woven jute fibres based epoxy composites. Mater Sci Eng A 528:5190–5195

    Article  Google Scholar 

  180. Zainudin ES, Yan LH, Haniffah WH, Jawaid M, Alothman OY (2014) Effect of coir fiber loading on mechanical and morphological properties of oil palm fibers reinforced polypropylene composites. Polym Compos 35:1418–1425

    Article  Google Scholar 

  181. Hariharan ABA, Khalil HPSA (2004) Influence of oil palm fibre loading on the mechanical and physical properties of glass fibre reinforced epoxy bi-layer hybrid laminated composite. In: Proceeding of 3rd USM-JIRCAS joint international symposium. Penang, Malaysia, pp 230–233

    Google Scholar 

  182. Hariharan ABA, Khalil HPSA (2005) Lignocellulose-based Hybrid bilayer laminate composite: Part I—studies on tensile and impact behavior of oil palm fiber-glass fiber-reinforced epoxy resin. J Compos Mater 39:663–684

    Article  Google Scholar 

  183. Khoshnava SM, Rostami R, Ismail M, Rahmat AR, Ogunbode BE (2017) Woven hybrid Biocomposite: mechanical properties of Woven Kenaf bast fibre/oil palm empty fruit bunches hybrid reinforced poly hydroxybutyrate biocomposite as non-structural building materials. Constr Build Mater 154:155–166

    Article  Google Scholar 

  184. Wang L, Zhu W, Wang X, Chen X, Chen G-Q, Xu K (2008) Processability modifications of poly(3-hydroxybutyrate) by plasticizing, blending, and stabilizing. J Appl Polym Sci 107:166–173

    Article  Google Scholar 

  185. Garcia MA, Martino MN, Zaritzky NE (2000) Lipid addition to improve barrier properties of edible starch-based films and coatings. J Food Sci 65:941–944

    Article  Google Scholar 

  186. Choi JS, Park WH (2004) Effect of biodegradable plasticizers on thermal and mechanical properties of poly(3-hydroxybutyrate). Polym Test 23:455–460

    Article  Google Scholar 

  187. Agrawal R, Saxena N, Sharma K, Thomas S, Sreekala M (2000) Activation energy and crystallization kinetics of untreated and treated oil palm fibre reinforced phenol formaldehyde composites. Mater Sci Eng A 277:77–82

    Article  Google Scholar 

  188. Hasan A, Waibhaw G, Saxena V, Pandey LM (2018) Nano-biocomposite scaffolds of chitosan, carboxymethyl cellulose and silver XE “Silver” nanoparticle modified cellulose nanowhiskers for bone tissue engineering applications. Int J Biol Macromol 111:923–934

    Article  Google Scholar 

  189. Liu H, Wang D, Song Z, Shang S (2011) Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of DNA hybridization. Cellulose 18:67–74

    Article  Google Scholar 

  190. Liu H, Song J, Shang S, Song Z, Wang D (2012) Cellulose nanocrystal/silver nanoparticle composites as bifunctional nanofillers within waterborne polyurethane. ACS Appl Mater Interfaces 4:2413–2419

    Article  Google Scholar 

  191. Costa LMM, de Olyveira GM, Basmaji P, Filho LX (2011) Bacterial cellulose towards functional green composites materials. J Bionanosci 5:167–172

    Article  Google Scholar 

  192. de Lima FM, Meneguin AB, Tercjak A, Gutierrez J, Cury BSF, dos Santos AM et al (2018) Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties. Carbohydr Polym 179:126–134

    Article  Google Scholar 

  193. Jalili Tabaii M, Emtiazi G (2018) Transparent nontoxic antibacterial wound dressing based on silver nano particle/bacterial cellulose nano composite synthesized in the presence of tripolyphosphate. J Drug Deliv Sci Technol 44:244–253

    Article  Google Scholar 

  194. Galateanu B, Bunea M-C, Stanescu P, Vasile E, Casarica A, Iovu H et al (2015) In Vitro studies of bacterial cellulose and magnetic nanoparticles smart nanocomposites for efficient chronic wounds healing. Stem Cells Int Article ID 195096

    Google Scholar 

  195. Gałuszka A, Migaszewski Z, Namieśnik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC—Trends Anal Chem 50:78–84

    Article  Google Scholar 

Download references

Acknowledgements

MDC, AAK and NBD are research members of the National Council of Research and Technology (CONICET, Argentina). DMF is a postdoctoral fellow from CONICET. Financial support was received UBA (UBACyT projects 20020130100021BA and 20020170100403BA), CONICET (PIP 112-201101-00370CO, PIP 112-2015-0100443CO). The authors would like to thank John Wiley & Sons, Ltd. for permission granted for Figs. 10, 12, and 13. The authors would like to thank Elsevier for permission granted for Figs. 2, 11, 14, and 21.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adriana A. Kolender or Norma D’Accorso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fidalgo, D.M., Contin, M.D., Kolender, A.A., D’Accorso, N. (2022). Polymeric Biocomposites from Renewable and Sustainable Natural Resources. In: Hasnain, M.S., Nayak, A.K., Alkahtani, S. (eds) Polymeric and Natural Composites. Advances in Material Research and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-70266-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70266-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70265-6

  • Online ISBN: 978-3-030-70266-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics