Skip to main content

The Effects of Masking in Melanoma Image Classification with CNNs Towards International Standards for Image Preprocessing

  • Conference paper
  • First Online:
Wireless Mobile Communication and Healthcare (MobiHealth 2020)

Abstract

The classification of skin lesion images is known to be biased by artifacts of the surrounding skin, but it is still not clear to what extent masking out healthy skin pixels influences classification performances, and why. To better understand this phenomenon, we apply different strategies of image masking (rectangular masks, circular masks, full masking, and image cropping) to three datasets of skin lesion images (ISIC2016, ISIC2018, and MedNode). We train CNN-based classifiers, provide performance metrics through a 10-fold cross-validation, and analyse the behaviour of Grad-CAM saliency maps through an automated visual inspection. Our experiments show that cropping is the best strategy to maintain classification performance and to significantly reduce training times as well. Our analysis through visual inspection shows that CNNs have the tendency to focus on pixels of healthy skin when no malignant features can be identified. This suggests that CNNs have the tendency of “eagerly” looking for pixel areas to justify a classification choice, potentially leading to biased discriminators. To mitigate this effect, and to standardize image preprocessing, we suggest to crop images during dataset construction or before the learning step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.isic-archive.com/.

  2. 2.

    https://github.com/DFKI-Interactive-Machine-Learning/TIML.

  3. 3.

    https://keras.io/.

  4. 4.

    https://www.tensorflow.org/.

References

  1. Berseth, M.: ISIC 2017 - skin lesion analysis towards melanoma detection. CoRR abs/1703.00523 (2017). http://arxiv.org/abs/1703.00523

  2. Bissoto, A., Fornaciali, M., Valle, E., Avila, S.: (De)Constructing bias on skin lesion datasets. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2019

    Google Scholar 

  3. Burdick, J., Marques, O., Weinthal, J., Furht, B.: Rethinking skin lesion segmentation in a convolutional classifier. J. Digit. Imaging 31(4), 435–440 (2017). https://doi.org/10.1007/s10278-017-0026-y

    Article  Google Scholar 

  4. Codella, N., Rotemberg, V., Tschandl, P., Celebi, M.E., et al.: Skin Lesion Analysis Toward Melanoma Detection 2018, February 2019. http://arxiv.org/abs/1902.03368

  5. Codella, N.C.F., Gutman, D., Celebi, M.E., Helba, B., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 International symposium on biomedical imaging. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, pp. 168–172. IEEE, April 2018. https://doi.org/10.1109/ISBI.2018.8363547

  6. Curiel-Lewandrowski, C., Novoa, R.A., Berry, E., Celebi, M.E., et al.: Artificial intelligence approach in melanoma. In: Melanoma, pp. 1–31. Springer, New York, New York, NY (2019). https://doi.org/10.1007/978-1-4614-7322-0_43-1

  7. Deng, J., Dong, W., Socher, R., Li, L.J., et al.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, pp. 248–255. IEEE, June 2009. https://doi.org/10.1109/CVPR.2009.5206848

  8. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115, January 2017. https://doi.org/10.1038/nature21056

  9. Giotis, I., Molders, N., Land, S., Biehl, M., et al.: MED-NODE: A computer-assisted melanoma diagnosis system using non-dermoscopic images. Expert Syst. Appl. 42(19), 6578–6585 (2015). https://doi.org/10.1016/j.eswa.2015.04.034

    Article  Google Scholar 

  10. Kawahara, J., Hamarneh, G.: Visual Diagnosis of Dermatological Disorders: Human and Machine Performance, June 2019. http://arxiv.org/abs/1906.01256

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1097–1105, Curran Associates, Inc., (2012)

    Google Scholar 

  12. Marchetti, M.A., Codella, N.C., Dusza, S.W., Gutman, D.A., et al.: Results of the 2016 international skin imaging collaboration international symposium on biomedical imaging challenge. J. Am. Acad. Dermatol. 78(2), 270–277.e1 (2018). https://doi.org/10.1016/j.jaad.2017.08.016

    Article  Google Scholar 

  13. Masood, A., Ali Al-Jumaily, A.: Computer aided diagnostic support system for skin cancer: a review of techniques and algorithms. Int. J. Biomed. Imaging 2013, 1–22 (2013). https://doi.org/10.1155/2013/323268

    Article  Google Scholar 

  14. Nguyen, D.M.H., Ezema, A., Nunnari, F., Sonntag, D.: A visually explainable learning system for skin lesion detection using multiscale input with attention U-Net. In: Schmid, U., Klügl, F., Wolter, D. (eds.) KI 2020. LNCS (LNAI), vol. 12325, pp. 313–319. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58285-2_28

    Chapter  Google Scholar 

  15. Petsiuk, V., Das, A., Saenko, K.: RISE: randomized input sampling for explanation of black-box models. In: Proceedings of the British Machine Vision Conference (BMVC) (2018)

    Google Scholar 

  16. Qian, C., Liu, T., Jiang, H., Wang, Z., et al.: A detection and segmentation architecture for skin lesion segmentation on dermoscopy images. CoRR abs/1809.03917 (2018). http://arxiv.org/abs/1809.03917

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., et al.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: The IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  19. Siegel, R.L., Miller, K.D., Jemal, A.: Cancer statistics. CA: Cancer J. Clin. 69(1), 7–34, January 2019. https://doi.org/10.3322/caac.21551

  20. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition, September 2014. http://arxiv.org/abs/1409.1556

  21. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer learning. In: Kůrková, V., Manolopoulos, Y., Hammer, B., Iliadis, L., Maglogiannis, I. (eds.) ICANN 2018. LNCS, vol. 11141, pp. 270–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01424-7_27

    Chapter  Google Scholar 

  22. Wahlster, W., Winterhalter, C.: German Standardization Roadmap on Artificial Intelligence. Technical Report, DIN e.V. and German Commission for Electrical, Electronic and Information Technologies of DIN and VDE (2020)

    Google Scholar 

  23. Winkler, J.K., Fink, C., Toberer, F., Enk, A., et al.: Association between surgical skin markings in dermoscopic images and diagnostic performance of a deep learning convolutional neural network for melanoma recognition. JAMA Dermatol. 155(10), 1135 (2019). https://doi.org/10.1001/jamadermatol.2019.1735

    Article  Google Scholar 

Download references

Acknowledgements

The research has been supported by the Ki-Para-Mi project (BMBF, 01IS19038B), the pAItient project (BMG, 2520DAT0P2), and the Endowed Chair of Applied Artificial Intelligence, Oldenburg University. We would like to thank all student assistants that contributed to the development of the platform (see https://iml.dfki.de/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Nunnari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nunnari, F., Ezema, A., Sonntag, D. (2021). The Effects of Masking in Melanoma Image Classification with CNNs Towards International Standards for Image Preprocessing. In: Ye, J., O'Grady, M.J., Civitarese, G., Yordanova, K. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 362. Springer, Cham. https://doi.org/10.1007/978-3-030-70569-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70569-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70568-8

  • Online ISBN: 978-3-030-70569-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics