Skip to main content

Role of Algae in Soil Nitrogen Fixation

  • Chapter
  • First Online:
Soil Nitrogen Ecology

Part of the book series: Soil Biology ((SOILBIOL,volume 62))

Abstract

Microorganisms help to increase the soil nutritional quality, as they are able to decompose organic matter. From soil, plants get nutrition for their growth and development. Along with microorganism, many fungi and algae also perform such functions. Algal cells are natural fertilizer and nowadays it is used worldwide, without any side effect, Algal cells have specific cells called heterocyst and are the site of nitrogen fixation. Algae are able to convert unavailable dinitrogen into bioavailable ammonia. Anabaena, Nostoc, and many other cyanobacteria (blue green algae, BGA) are able to fix atmospheric nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bergman B, Gallon JR, Rai AN, Stal LJ (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19:139–185

    Article  CAS  Google Scholar 

  • Bray CM (1983) Nitrogen metabolism in plants. Longman Group Ltd, Harlow

    Google Scholar 

  • Burk D, Lineweaver H, Horner CKJ (1934) The specific influence of acidity on the mechanism of nitrogen fixation by azotobacter. Bacteriology 27:325

    Article  CAS  Google Scholar 

  • Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of earth’s nitrogen cycle. Science 330:192

    Article  CAS  Google Scholar 

  • Carpenter EJ, Price CC (1976) Marine Oscillatoria (Trichodesmium): explanation for aerobic nitrogen fixation without heterocysts. Science 191(4233):1278–1280

    Google Scholar 

  • Castenholz RW (2001) Cyanobacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 473–487

    Chapter  Google Scholar 

  • Castenholz RW, Waterbury JB (1989) Group I. Cyanobacteria. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 3. Williams & Wilkins, Baltimore, pp 1710–1728

    Google Scholar 

  • Cheng QJ (2008) Perspectives in biological nitrogen fixation resesarch. Integr Plant Biol 50:786

    Article  CAS  Google Scholar 

  • Dos Santos PC, Fang Z, Mason SW, Setubal JC (2012) Dixon R. Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes. BMC Genomics 13:162

    Article  CAS  Google Scholar 

  • Fay P, Fogg GE (1962) Studies on nitrogen fixation by blue-green algae. III. Growth and nitrogen fixation in Chlorogloea fritschii Mitra. Arch Mikrobiol 42:310–321

    Article  CAS  Google Scholar 

  • Ferguson S (1998) Nitrogen cycle enzymology. J Curr Opin Chem Biol 2:182

    Article  CAS  Google Scholar 

  • Fleming H, Haselkorn R (1973) Differentiation in Nostoc muscorum: nitrogenase is synthesized in heterocysts. Proc Natl Acad Sci U S A 70:2727–2731

    Article  CAS  Google Scholar 

  • Fogg GE (1949) Growth and heterocyst production in Anabaena cylindrica Lemm. II. In relation to carbon and nitrogen metabolism. Ann Bot 13:241–259

    Article  CAS  Google Scholar 

  • Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451:293

    Article  CAS  Google Scholar 

  • Haber F (1923) Bemerkung zu vorstehender Notiz. Naturwissenschaften 11:339–340

    Article  CAS  Google Scholar 

  • Haber F (1992) About the representation of ammonia from nitrogen and hydrogen. Nat Sci 10:1041

    Article  Google Scholar 

  • Issa AA, Alla MHA, Ohyama T (1997) Nitrogen fixing cyanobacteria: future prospects, 2014. In: Advances in biology and ecology of nitrogen fixation. InTech Open, London

    Google Scholar 

  • Jia H-P, Quadrelli E (2014) Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chem Soc Rev 43:547

    Article  CAS  Google Scholar 

  • Lex M (1970) Nitrogenase activity in the blue-green alga Plectonema boryanum strain 594. Arch Mikrobiol 73:250–260

    Article  Google Scholar 

  • Li S, Ley SH, Qianlin W (1983) Nitrogen fixing blue-green algae, a source of biofertilizer. In: Tseng CK (ed) Proc of the joint China-US phycology symposium. Science Press, Beijing, p 479

    Google Scholar 

  • MacKay BA (2004) Dinitrogen coordination chemistry: on the biomimetic borderlands. Chem Rev 104:385

    Article  CAS  Google Scholar 

  • McGlynn SE, Boyd ES, Peters JW, Orphan VJ (2013) Classifying the metal dependence of uncharacterized nitrogenases. Front Microbiol 3:419

    Article  Google Scholar 

  • Peterson RB, Wolk CP (1978a) Localization of an uptake hydrogenase in Anabaena. Physiology 61:49

    Google Scholar 

  • Peterson RB, Wolk CP (1978b) High recovery of nitrogenase activity and of 55Fe-labeled nitrogenase in heterocysts isolated from Anabaena variabilis. Proc Natl Acad Sci U S A 75:6271–6275

    Article  CAS  Google Scholar 

  • Rippka R, Stanier RY (1978) The effect of anaerobiosis on nitrogenase synthesis and heterocyst development by nostocacean cyanobacteria. J Gen Microbiol 105:83–94

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories, and properties of pure cultures of cyanobacteria. J Gen Microbial 111:l61

    Google Scholar 

  • Rodrigo V, Novelo E (2007) Seasonal changes in periphyton nitrogen fixation in a protected tropical wetland. Biol Fertil Soils 43:367–372

    Google Scholar 

  • Singh RN (1961) Role of blue-green algae in nitrogen economy. In Indian Council Agric. Res. New Delhi, India

    Google Scholar 

  • Smil V (2004) Enriching the earth. In: Haber F, Bosch C (eds) The transformation of world food production. MIT Press, Cambridge

    Google Scholar 

  • Smith RV, Evans MCW (1971) Nitrogenase activity in cell free extracts of the blue-green alga Anabaena cylindrica. J Bacteriol 105:913–917

    Article  CAS  Google Scholar 

  • Stewart WDP, Haystead A, Pearson HW (1969) Nitrogenase activity in heterocysts of blue-green algae. Nature 224:226–228

    Article  CAS  Google Scholar 

  • Stewart WDP, Rowell P, Rai AN (1980) Symbiotic nitrogen-fixing cyanobacteria. In: Stewart WDP, Gallon JR (eds) Nitrogen fixation. Academic, London, pp 239–277

    Google Scholar 

  • Thamdrup B (2012) New pathways and processes in global nitrogen cycle. Annu Rev Ecol Evol Syst 43:407

    Article  Google Scholar 

  • Wyatt JT, Silvey JKGS (1969) Nitrogen fixation by Gloeocapsa. Science 165:908–909

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anamika Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, A. (2021). Role of Algae in Soil Nitrogen Fixation. In: Cruz, C., Vishwakarma, K., Choudhary, D.K., Varma, A. (eds) Soil Nitrogen Ecology. Soil Biology, vol 62. Springer, Cham. https://doi.org/10.1007/978-3-030-71206-8_24

Download citation

Publish with us

Policies and ethics