Skip to main content

Characterizing Research Leadership Flow Diffusion: Assortative Mixing, Preferential Attachment, Triadic Closure and Reciprocity

  • Conference paper
  • First Online:
Diversity, Divergence, Dialogue (iConference 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12645))

Included in the following conference series:

Abstract

Research leadership is of great significance to the research collaboration, especially in large scale projections. Characterizing the mechanisms and the processes of research leadership flow diffusion become essential to understand the knowledge flow diffusion in research collaboration. In this paper, we systemically analyze the differences in possibilities research leadership flow occurs between two researchers as seen from the effect of assortative mixing, preferential attachment, triadic closure, and reciprocity via Exponential Random Graph Model (ERGM). We demonstrate that combining both the researchers’ attributes and topological feature effects (assortative mixing, preferential attachment, triadic closure and reciprocity) can better characterize the diffusion of research leadership flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fernández, A., Ferrándiz, E., León, M.D.: Proximity dimensions and scientific collaboration among academic institutions in Europe: the closer, the better? Scientometrics 106(3), 1073–1092 (2016). https://doi.org/10.1007/s11192-015-1819-8

    Article  Google Scholar 

  2. Jiang, L., et al.: The relationships between distance factors and international collaborative research outcomes: a bibliometric examination. J. Inf. 12(3), 618–630 (2018)

    Google Scholar 

  3. Zaccaro, S.J., Rittman, A.L., Marks, M.A.: Team leadership. Leadersh. Quart. 12(4), 451–483 (2001)

    Article  Google Scholar 

  4. Wagner, C.S., et al.: Science and technology collaboration: Building capability in developing countries. RAND CORP, Santa Monica (2001)

    Google Scholar 

  5. Klavans, R., Boyack, K.: Toward an objective, reliable and accurate method for measuring research leadership. Scientometrics 82(3), 539–553 (2010)

    Article  Google Scholar 

  6. Chinchilla-Rodríguez, Z., Sugimoto, C.R., Larivière, V.: Follow the leader: On the relationship between leadership and scholarly impact in international collaborations. PloS one 14(6) (2019)

    Google Scholar 

  7. Zhou, J., Zeng, A., Fan, Y., Di, Z.: Identifying important scholars via directed scientific collaboration networks. Scientometrics 114(3), 1327–1343 (2017). https://doi.org/10.1007/s11192-017-2619-0

    Article  Google Scholar 

  8. Wang, L., Wang, X.: Who sets up the bridge? Tracking scientific collaborations between China and the European Union. Res. Eval. 26(2), 124–131 (2017)

    Article  Google Scholar 

  9. He, C., Wu, J., Zhang, Q.: Research leadership flow determinants and the role of proximity in research collaborations. J. Assoc. Inf. Sci. Technol. (2019)

    Google Scholar 

  10. Zhang, C., et al.: Understanding scientific collaboration: Homophily, transitivity, and preferential attachment. J. Am. Soc. Inf. Sci. 69(1), 72–86 (2018)

    Google Scholar 

  11. Peng, T.-Q.: Assortative mixing, preferential attachment, and triadic closure: a longitudinal study of tie-generative mechanisms in journal citation networks. J. Inf. 9(2), 250–262 (2015)

    Google Scholar 

  12. Wang, B., Bu, Y., Xu, Y.: A quantitative exploration on reasons for citing articles from the perspective of cited authors. Scientometrics 116(2), 675–687 (2018). https://doi.org/10.1007/s11192-018-2787-6

    Article  Google Scholar 

  13. Xiong, J., Feng, X., Tang, Z.: Understanding user-to-User interaction on government microblogs: an exponential random graph model with the homophily and emotional effect. Inf. Process. Manag. 102229 (2020)

    Google Scholar 

  14. Peng, T.-Q., et al.: Follower-followee network, communication networks, and vote agreement of the US members of congress. Commun. Res. 43(7), 996–1024 (2016)

    Article  Google Scholar 

  15. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Google Scholar 

  16. Newman, M.E.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64(2), 025102 (2001)

    Article  Google Scholar 

  17. Franceschet, M.: Collaboration in computer science: a network science approach. J. Am. Soc. Inform. Sci. Technol. 62(10), 1992–2012 (2011)

    Article  Google Scholar 

  18. Jiang, S., et al.: The roles of sharing, transfer, and public funding in nanotechnology knowledge-diffusion networks. J. Am. Soc. Inf. Sci. 66(5), 1017–1029 (2015)

    Google Scholar 

  19. Kim, K., Altmann, J.: Effect of homophily on network formation. Commun. Nonlinear Sci. Numer. Simul. 44, 482–494 (2017)

    Article  MathSciNet  Google Scholar 

  20. Cimenler, O., Reeves, K.A., Skvoretz, J.: An evaluation of collaborative research in a college of engineering. J. Inf. 9(3), 577–590 (2015)

    Google Scholar 

  21. Hwang, H., Kim, K.O.: Social media as a tool for social movements: the effect of social media use and social capital on intention to participate in social movements. Int. J. Consum. Stud. 39(5), 478–488 (2015)

    Article  Google Scholar 

  22. Ye, Q., et al.: Can social capital be transferred cross the boundary of the real and virtual worlds? An empirical investigation of Twitter (2012)

    Google Scholar 

  23. Schank, T., Wagner, D.: Approximating clustering coefficient and transitivity. J. Graph Algorithms Appl. 9(2), 265–275 (2005)

    Article  MathSciNet  Google Scholar 

  24. Ostrom, E.: A behavioral approach to the rational choice theory of collective action: presidential address, American political science association. Am. Polit. Sci. Rev. 1998, 1–22 (1997)

    MathSciNet  Google Scholar 

  25. Pan, W., Shen, C., Feng, B.: You get what you give: understanding reply reciprocity and social capital in online health support forums. J. Health Commun. 22(1), 45–52 (2017)

    Article  Google Scholar 

  26. Plotnikova, T., Rake, B.: Collaboration in pharmaceutical research: exploration of country-level determinants. Scientometrics 98(2), 1173–1202 (2013). https://doi.org/10.1007/s11192-013-1182-6

    Article  Google Scholar 

  27. Sinatra, R., et al.: Quantifying the evolution of individual scientific impact. Science 354(6312), aaf5239 (2016)

    Google Scholar 

  28. Liu, Z., Xie, X., Chen, L.: Context-aware academic collaborator recommendation. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2018)

    Google Scholar 

  29. Zhang, J.: Uncovering mechanisms of co-authorship evolution by multirelations-based link prediction. Inf. Process. Manage. 53(1), 42–51 (2017)

    Article  Google Scholar 

  30. Zhang, Y., Zhao, F., Lu, J.: P2V: large-scale academic paper embedding. Scientometrics 121(1), 399–432 (2019). https://doi.org/10.1007/s11192-019-03206-9

    Article  Google Scholar 

  31. Robins, G., et al.: An introduction to exponential random graph (p*) models for social networks. Soc. Netw. 29(2), 173–191 (2007)

    Article  Google Scholar 

  32. Handcock, M.S., et al.: statnet: software tools for the representation, visualization, analysis and simulation of network data. J. Stat. Softw. 24(1), 1548 (2008)

    Article  MathSciNet  Google Scholar 

  33. Goodreau, S.M., Kitts, J.A., Morris, M.: Birds of a feather, or friend of a friend? Using exponential random graph models to investigate adolescent social networks. Demography 46(1), 103–125 (2009)

    Article  Google Scholar 

  34. Sekara, V., et al.: The chaperone effect in scientific publishing. Proc. Natl. Acad. Sci. U.S.A. 115(50), 12603–12607 (2018)

    Article  Google Scholar 

  35. Wang, D., Song, C., Barabási, A.-L.: Quantifying long-term scientific impact. Science 342(6154), 127–132 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaocheng He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, C., Ou, G., Wu, J. (2021). Characterizing Research Leadership Flow Diffusion: Assortative Mixing, Preferential Attachment, Triadic Closure and Reciprocity. In: Toeppe, K., Yan, H., Chu, S.K.W. (eds) Diversity, Divergence, Dialogue. iConference 2021. Lecture Notes in Computer Science(), vol 12645. Springer, Cham. https://doi.org/10.1007/978-3-030-71292-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71292-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71291-4

  • Online ISBN: 978-3-030-71292-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics