Skip to main content

Automotive Radar Signal and Interference Simulation for Testing Autonomous Driving

  • Conference paper
  • First Online:
Intelligent Transport Systems, From Research and Development to the Market Uptake (INTSYS 2020)

Abstract

With the development of automated driving functions, more and more environmental sensors are combined for the vehicle perception. A problem that arises with the extensive use of radar sensing is called interference. It describes the confounding effects from the wave overlay of two or more radar sensors operating in the same frequency-band. At this point, methods for interference avoidance and mitigation come to apply. For a valid design and development of such methods, real sensor measurements were required in the past. This publication instead proposes a novel sensor modelling technique that represents the interference mechanisms within the radar sensor signals. It is based on a full radar time signal simulation coupled with a broad range of influencing factors. The concept is validated by comparing the simulated signal processing steps to the real sensor measurement behavior. As a result, mitigation methods for the sensor fault behavior can be fully assessed within a simulation environment. The opportunity for applying new scenario data and a variable set of radar sensors underlines the importance of this approach in the development of future radar systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hummel, T., Kühn, M., Bende, J., Lang A.: Fahrerassistenzsysteme - Ermittlung des Sicherheitspotenzials auf Basis des Schadengeschehes der Deutschen Versicherer. GDV Forschungsbericht FS 03, (2011)

    Google Scholar 

  2. European New Car Assessment Programme: Test protocol - AEB VRU systems - Version 2.0.2. EuroNCAP (November 2017)

    Google Scholar 

  3. German Association of the Automotive Industry (VDA): Automation - from driver assistance systems to automated driving (2015)

    Google Scholar 

  4. ETSI EN 302 264: European Standard. https://www.etsi.org. Accessed 8 May 2020

  5. Patole, S.M., Torlak, M., Wang, D., Ali, M.: Automotive radars: a review of signal processing techniques. IEEE Signal Process. Mag. 34, 22–35 (2017)

    Article  Google Scholar 

  6. Bordoux, A., Parashar, K., Bauduin, M.: Phenomenology of mutual interference of FMCW and PMCW automotive radars. In: 2017 IEEE Radar Conference (RadarConf), pp. 1709–1714 (2017)

    Google Scholar 

  7. Prinz, A., Roth, J., Schwendner, J., Ayeb, M., Brabetz, L.: Validation strategy for radar-based assistance systems under the influence of interference. In: 2020 German Microwave Conference (GeMiC), pp. 252–255 (2020)

    Google Scholar 

  8. Brooker, G.M.: Mutual interference of millimeter-wave radar systems. IEEE Trans. Electromagn. Compat. 49, 170–181 (2007)

    Article  Google Scholar 

  9. Bechter, J., Waldschmidt, C.: Automotive radar interference mitigation by reconstruction and cancellation of interference component. In: 2015 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM) (2015)

    Google Scholar 

  10. Bechter, J., Roos, F., Rahman, M., Waldschmidt, C.: Automotive radar interference mitigation using a sparse sampling approach. In: 2017 European Radar Conference (EURAD) (2017)

    Google Scholar 

  11. Schipper, T., Schlichenmaier, J., Ahbe, D., Mahler, T., Kowalewski, J., Zwick, T.: A simulator for multi-user automotive radar scenarios. In: IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM) (2015)

    Google Scholar 

  12. Beise, H., Stifter, T., Schröder, U.: Virtual interference study for FMCW and PMCW radar. In: 2018 German Microwave Conference (GeMiC) (2018)

    Google Scholar 

  13. Holder, M., Linnhoff, C., Rosenberger, P., Winner, H.: The Fourier tracing approach for modeling automotive radar sensors. In: 20th International Radar Symposium (IRS) (2019)

    Google Scholar 

  14. Kronauge, M., Rohling, H.: Fast two-dimensional CFAR procedure. IEEE Trans. Aerosp. Electron. Syst. 49, 1817–1823 (2013)

    Article  Google Scholar 

  15. Iovescu, C., Rao, S.: The fundamentals of millimeter wave sensors. Texas Instrum. SPYY005, 1–8 (2017)

    Google Scholar 

  16. Hischke, M.: Collision warning radar interference. In: Proceedings of the Intelligent Vehicles 1995 Symposium (1995)

    Google Scholar 

  17. Goppelt, M., Bloecher, H.-L.: Automotive radar-investigation of mutual interference mechanism. In: Advances in Radio Science, pp. 55–60 (2010)

    Google Scholar 

  18. Kim, J., Lee, S., Kim, S.: Modulation type classification of interference signals in automotive radar systems. IET Radar Sonar Navig. 13, 944–952 (2019)

    Article  Google Scholar 

  19. Goppelt, M., Blöcher, H.-L., Menzel, W.: Analytical investigation of mutual interference between automotive FMCW radar sensors. In: 2011 German Microwave Conference (GeMiC) (2011)

    Google Scholar 

  20. Khoury, J., Ramanathan, R., McCloskey, D., Smith R., Campbell, T.: RadarMAC: mitigating radar interference in self-driving cars. In: 13th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON) (2016)

    Google Scholar 

  21. Eder, T., Prinz, A., Brabetz, L., Biebl, E.: Szenarienbasierte Validierung eines hybriden Radarmodells für Test und Absicherung automatisierter Fahrfunktionen. In: Tille, T. (ed.) Automobil-Sensorik 3, pp. 21–43. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-662-61260-6_1

    Chapter  Google Scholar 

  22. Gardill, M., Schwendner, J., Fuchs, J.: In-situ time-frequency analysis of the 77GHz bands using a commercial chirp-sequence automotive FMCW radar sensor. In: IMS - Recent Advances in Radar Systems Applications (2019)

    Google Scholar 

  23. Klausing, H., Holpp, W.: Radar mit realer und synthetischer Apertur - Konzeption und Realisierung. De Gruyter, Berlin (1999)

    Google Scholar 

  24. Skolnik, M.I.: Radar Handbook, 2nd edn. McGraw-Hill Inc., New York (1990)

    Google Scholar 

  25. Müller, R.: Halbleiter-Elektronik 15. Rauschen, 2nd edn. Springer, Heidelberg (1990). https://doi.org/10.1007/978-3-642-96960-7

  26. Kamel, E.B., Peden, A., Pajusco, P.: RCS modeling and measurements for automotive radar applications in the W band. In: 11th European Conference on Antennas and Propagation (EUCAP) (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Prinz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prinz, A., Peters, LT., Schwendner, J., Ayeb, M., Brabetz, L. (2021). Automotive Radar Signal and Interference Simulation for Testing Autonomous Driving. In: Martins, A.L., Ferreira, J.C., Kocian, A., Costa, V. (eds) Intelligent Transport Systems, From Research and Development to the Market Uptake. INTSYS 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 364. Springer, Cham. https://doi.org/10.1007/978-3-030-71454-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71454-3_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71453-6

  • Online ISBN: 978-3-030-71454-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics