Skip to main content

Cross-Modality Brain Structures Image Segmentation for the Radiotherapy Target Definition and Plan Optimization

  • Conference paper
  • First Online:
Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data (MICCAI 2020)

Abstract

This paper summarizes results of the International Challenge “Anatomical Brain Barriers to Cancer Spread: Segmentation from CT and MR Images”, ABCs, organized in conjunction with the MICCAI 2020 conference. Eighteen segmentation algorithms were trained on a set of 45 CT, T\(_1\)-weighted MR, and T\(_2\)-weighted FLAIR MR post-operative images of glioblastoma and low-grade glioma patients. Manual delineations were provided for the brain structures: falx cerebri, tentorium cerebelli, transverse and sagittal brain sinuses, ventricles, cerebellum (Task 1) and for the brainstem, structures of visual pathway, optic chiasm, optic nerves, and eyes, structures of auditory pathway, cochlea, and lacrimal glands (Task 2). The algorithms were tested on a set of 15 cases and received the final score for predicting segmentation on a separate 15 case image set. Multi-rater delineations with seven raters were obtained for the three cases. The results suggest that neural network based algorithms have become a successful technique of brain structure segmentation, and closely approach human performance in segmenting specific brain structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Engels, B., Soete, G., Verellen, D., Storme, G.: Conformal arc radiotherapy for prostate cancer: increased biochemical failure in patients with distended rectum on the planning computed tomogram despite image guidance by implanted markers. Int. J. Radiat. Oncol. Biol. Phys. 74(2), 388–391 (2009)

    Article  Google Scholar 

  2. Niyazi, M., Brada, M., Chalmers, A.J., Combs, S.E., Erridge, S.C., Fiorentino, A., et al.: ESTRO-ACROP guideline “target delineation of glioblastomas”. Radiother. Oncol. 118(1), 35–42 (2016)

    Article  Google Scholar 

  3. Kruser, T.J., et al.: NRG brain tumor specialists consensus guidelines for glioblastoma contouring. J. Neuro-Oncol. 143(1), 157–166 (2019). https://doi.org/10.1007/s11060-019-03152-9

    Article  Google Scholar 

  4. Karunamuni, R., et al.: Dose-dependent cortical thinning after partial brain irradiation in high-grade glioma. Int. J. Rad. Oncol. Biol. Phys. 94(2), 297–304 (2016)

    Article  Google Scholar 

  5. Valindria, V.V., et al.: Multi-modal learning from unpaired images: application to multi-organ segmentation in CT and MRI. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, pp. 547–556 (2018)

    Google Scholar 

  6. Yang, J., Dvornek, N.C., Zhang, F., Chapiro, J., Lin, M.D., Duncan, J.S.: Unsupervised domain adaptation via disentangled representations: application to cross-modality liver segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 255–263. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_29

    Chapter  Google Scholar 

  7. Chartsias, A., Joyce, T., Dharmakumar, R., Tsaftaris, S.A.: Adversarial image synthesis for unpaired multi-modal cardiac data. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 3–13. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68127-6_1

    Chapter  Google Scholar 

  8. Jue, J., et al.: Integrating cross-modality hallucinated MRI with CT to aid mediastinal lung tumor segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 221–229. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_25

    Chapter  Google Scholar 

  9. Havaei, M., Guizard, N., Chapados, N., Bengio, Y.: HeMIS: hetero-modal image segmentation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 469–477. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_54

    Chapter  Google Scholar 

  10. Shen, Y., Gao, M.: Brain tumor segmentation on MRI with missing modalities. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 417–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_32

    Chapter  Google Scholar 

  11. Nikolov, S., Blackwell, S., Mendes, R., De Fauw, J., Meyer, C., Hughes, C., et al.: Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. e-prints [Internet]. arXiv:1809.04430 (2018)

  12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Isensee, F., et al.: nnu-net: self-adapting frame- work for U-Net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Chen, H., Wang, X., Huang, Y., Wu, X., Yu, Y., Wang, L.: Harnessing 2D networks and 3D features for automated pancreas segmentation from volumetric CT images. MICCAI 6, 339–347 (2019)

    Google Scholar 

  16. Cicek, O., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. arXiv e-prints [Internet]. (2016)

  17. Yu, Q., et al.: C2FNAS: coarse-to-fine neural architecture search for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  18. Clevert, D.-A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). arXiv e-prints [Internet]. arXiv:1511.07289 (2016)

  19. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  20. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings - 2016 4th International Conference on 3D Vision, 3DV 2016, pp. 565–571 (2016). https://doi.org/10.1109/3DV.2016.79

  21. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: 31st AAAI Conference Artificial Intelligence AAAI 2017, pp. 4278–4284 (2017)

    Google Scholar 

  22. Oh, S.A., Yea, J.W., Kang, M.K., Park, J.W., Kim, S.K.: Analysis of the setup uncertainty and margin of the daily ExacTrac 6D image guide system for patients with brain tumors. PLoS ONE 11(3), e0151709 (2016)

    Article  Google Scholar 

  23. Cardenas, C.E., Yang, J., Anderson, B.M., Court, L.E., Brock, K.B.: Advances in auto-segmentation. Semin. Radiat. Oncol. 29(3), 185–197 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadya Shusharina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shusharina, N. et al. (2021). Cross-Modality Brain Structures Image Segmentation for the Radiotherapy Target Definition and Plan Optimization. In: Shusharina, N., Heinrich, M.P., Huang, R. (eds) Segmentation, Classification, and Registration of Multi-modality Medical Imaging Data. MICCAI 2020. Lecture Notes in Computer Science(), vol 12587. Springer, Cham. https://doi.org/10.1007/978-3-030-71827-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71827-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71826-8

  • Online ISBN: 978-3-030-71827-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics