Skip to main content

Response-Related Predictors of Survival and of Treatment-Free Remission in CML

  • Chapter
  • First Online:
Chronic Myeloid Leukemia

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

  • 734 Accesses

Abstract

Response to tyrosine kinase inhibitor (TKI) therapy in CML can be measured by haematological, cytogenetic and molecular criteria. Achieving haematological and cytogenetic response is still a desirable early measure of response. However measurement of the level of BCR-ABL1 transcripts in the blood by qRT-PCR, adjusted to the international scale (IS), is now the primary means of monitoring response. Achieving time-dependent molecular targets is a strong predictor of survival as well as indicating the longer-term prospects of achieving eligibility for treatment-free remission (TFR). Optimal response can be determined solely by the achievement and maintenance of time-dependent molecular response levels. Likewise, treatment failure is largely defined by a failure to achieve molecular milestones or loss of that molecular response, except in cases where treatment failure is evident by progression to advanced-phase disease. Treatment failure mandates a switch in therapy, usually to a more potent TKI, if possible. In between optimal response and treatment failure, there is a “warning category” where outcomes are generally inferior and therapeutic decisions are more complex. Recently, the importance of determining the dynamics of response, not just the BCR-ABL1 level at one specified time point, has been recognized, particularly when determining the probability of achieving sustained TFR in eligible patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hehlmann R, Muller MC, Lauseker M, Hanfstein B, Fabarius A, Schreiber A, et al. Deep molecular response is reached by the majority of patients treated with imatinib, predicts survival, and is achieved more quickly by optimized high-dose imatinib: results from the randomized CML-study IV. J Clin Oncol. 2014;32(5):415–23. https://doi.org/10.1200/JCO.2013.49.9020.

    Article  CAS  PubMed  Google Scholar 

  2. Hochhaus A, Saglio G, Hughes TP, Larson RA, Kim DWW, Issaragrisil S, et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia. 2016;30(5):1044–54. https://doi.org/10.1038/leu.2016.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cortes JE, Saglio G, Kantarjian HM, Baccarani M, Mayer J, Boque C, et al. Final 5-year study results of DASISION: the Dasatinib versus imatinib study in treatment-naive chronic myeloid leukemia patients trial. J Clin Oncol. 2016;34(20):2333–40. https://doi.org/10.1200/JCO.2015.64.8899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kalmanti L, Saussele S, Lauseker M, Muller MC, Dietz CT, Heinrich L, et al. Safety and efficacy of imatinib in CML over a period of 10 years: data from the randomized CML-study IV. Leukemia. 2015;29(5):1123–32. https://doi.org/10.1038/leu.2015.36.

    Article  CAS  PubMed  Google Scholar 

  5. Hughes TP, Saglio G, Larson RA, Kantarjian HM, Kim D-W, Issaragrisil S, et al. Long-term outcomes in patients with chronic myeloid leukemia in chronic phase receiving frontline nilotinib versus imatinib: ENESTnd 10-year analysis. Blood. 2019;134(Supplement_1):2924. https://doi.org/10.1182/blood-2019-128761%JBlood.

    Article  Google Scholar 

  6. Wang W, Cortes JE, Tang G, Khoury JD, Wang S, Bueso-Ramos CE, et al. Risk stratification of chromosomal abnormalities in chronic myelogenous leukemia in the era of tyrosine kinase inhibitor therapy. Blood. 2016;127(22):2742–50. https://doi.org/10.1182/blood-2016-01-690230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alhuraiji A, Kantarjian H, Boddu P, Ravandi F, Borthakur G, DiNardo C, et al. Prognostic significance of additional chromosomal abnormalities at the time of diagnosis in patients with chronic myeloid leukemia treated with frontline tyrosine kinase inhibitors. Am J Hematol. 2018;93(1):84–90. https://doi.org/10.1002/ajh.24943.

    Article  CAS  PubMed  Google Scholar 

  8. Wang W, Cortes JE, Lin P, Beaty MW, Ai D, Amin HM, et al. Clinical and prognostic significance of 3q26.2 and other chromosome 3 abnormalities in CML in the era of tyrosine kinase inhibitors. Blood. 2015;126(14):1699–706. https://doi.org/10.1182/blood-2015-05-646489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ross DM, Branford S, Moore S, Hughes TP. Limited clinical value of regular bone marrow cytogenetic analysis in imatinib-treated chronic phase CML patients monitored by RQ-PCR for BCR-ABL. Leukemia. 2006;20(4):664–70.

    Article  CAS  PubMed  Google Scholar 

  10. Chen X, Zheng J, Liang K, He Y, Du W, Li J, et al. Characterisation of clonal Philadelphia-negative cytogenetic abnormalities in a large cohort of chronic myeloid leukaemia. Intern Med J. 2018;48(4):439–44. https://doi.org/10.1111/imj.13527.

    Article  CAS  PubMed  Google Scholar 

  11. Issa GC, Kantarjian H, Nogueras Gonzalez G, Borthakur G, Tang G, Wierda W, et al. Clonal chromosomal abnormalities appearing in Philadelphia negative metaphases during CML treatment. Blood. 2017; https://doi.org/10.1182/blood-2017-07-792143.

  12. Branford S, Yeung DT, Prime JA, Choi S-Y, Bang J-H, Park JE, et al. BCR-ABL1 doubling times more reliably assess the dynamics of CML relapse compared with the BCR-ABL1 fold rise: implications for monitoring and management. Blood. 2012;119(18):4264–71. https://doi.org/10.1182/blood-2011-11-393041.

    Article  CAS  PubMed  Google Scholar 

  13. Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML, et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med. 2003;349(15):1423–32.

    Article  CAS  PubMed  Google Scholar 

  14. Cortes JE, Gambacorti-Passerini C, Deininger MW, Mauro MJ, Chuah C, Kim D-W, et al. Bosutinib versus imatinib for newly diagnosed chronic myeloid leukemia: results from the randomized BFORE trial. J Clin Oncol. 2018;36(3):231–7. https://doi.org/10.1200/JCO.2017.74.7162.

    Article  CAS  PubMed  Google Scholar 

  15. Hughes TP, Mauro MJ, Cortes JE, Minami H, Rea D, DeAngelo DJ, et al. Asciminib in chronic myeloid leukemia after ABL kinase inhibitor failure. N Engl J Med. 2019;381(24):2315–26. https://doi.org/10.1056/NEJMoa1902328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hochhaus A, Baccarani M, Silver RT, Schiffer C, Apperley JF, Cervantes F, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34(4):966–84. https://doi.org/10.1038/s41375-020-0776-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. NCCN Clinical practice guidelines in oncology: chronic myeloid leukemia. Version 3.2020.

    Google Scholar 

  18. Branford S, Hughes TP, Rudzki Z. Monitoring chronic myeloid leukaemia therapy by real-time quantitative PCR in blood is a reliable alternative to bone marrow cytogenetics. Br J Haematol. 1999;107(3):587–99.

    Article  CAS  PubMed  Google Scholar 

  19. Akard LP, Cortes JE, Albitar M, Goldberg SL, Warsi G, Wetzler M, et al. Correlations between cytogenetic and molecular monitoring among patients with newly diagnosed chronic myeloid leukemia in chronic phase: post hoc analyses of the Rationale and Insight for Gleevec High-Dose Therapy study. Arch Pathol Lab Med. 2014;138(9):1186–92. https://doi.org/10.5858/arpa.2013-0584-OA.

    Article  PubMed  Google Scholar 

  20. Baccarani M, Saglio G, Goldman J, Hochhaus A, Simonsson B, Appelbaum F, et al. Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood. 2006;108(6):1809–20. https://doi.org/10.1182/blood-2006-02-005686.

    Article  CAS  PubMed  Google Scholar 

  21. Baccarani M, Cortes J, Pane F, Niederwieser D, Saglio G, Apperley J, et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol. 2009;27(35):6041–51. https://doi.org/10.1200/JCO.2009.25.0779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Merx K, Muller MC, Kreil S, Lahaye T, Paschka P, Schoch C, et al. Early reduction of BCR-ABL mRNA transcript levels predicts cytogenetic response in chronic phase CML patients treated with imatinib after failure of interferon alpha. Leukemia. 2002;16(9):1579–83.

    Article  CAS  PubMed  Google Scholar 

  23. Wang L, Pearson K, Ferguson JE, Clark RE. The early molecular response to imatinib predicts cytogenetic and clinical outcome in chronic myeloid leukaemia. Br J Haematol. 2003;120(6):990–9.

    Article  CAS  PubMed  Google Scholar 

  24. Branford S, Rudzki Z, Harper A, Grigg A, Taylor K, Durrant S, et al. Imatinib produces significantly superior molecular responses compared to interferon alfa plus cytarabine in patients with newly diagnosed chronic myeloid leukemia in chronic phase. Leukemia. 2003;17(12):2401–9.

    Article  CAS  PubMed  Google Scholar 

  25. Hughes TP, Hochhaus A, Branford S, Muller MC, Kaeda JS, Foroni L, et al. Long-term prognostic significance of early molecular response to imatinib in newly diagnosed chronic myeloid leukemia: an analysis from the International Randomized Study of Interferon and STI571 (IRIS). Blood. 2010;116(19):3758–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hanfstein B, Muller MC, Hehlmann R, Erben P, Lauseker M, Fabarius A, et al. Early molecular and cytogenetic response is predictive for long-term progression-free and overall survival in chronic myeloid leukemia (CML). Leukemia. 2012;26(9):2096–102.

    Article  CAS  PubMed  Google Scholar 

  27. Marin D, Ibrahim AR, Lucas C, Gerrard G, Wang L, Szydlo RM, et al. Assessment of BCR-ABL1 transcript levels at 3 months is the only requirement for predicting outcome for patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors. J Clin Oncol. 2012;30(3):232–8.

    Article  CAS  PubMed  Google Scholar 

  28. Branford S, Kim D-W, Soverini S, Haque A, Shou Y, Woodman RC, et al. Initial molecular response at 3 months may predict both response and event-free survival at 24 months in imatinib-resistant or -intolerant patients with Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase treated with nilotinib. J Clin Oncol. 2012;30(35):4323–9. https://doi.org/10.1200/jco.2011.40.5217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marin D, Hedgley C, Clark RE, Apperley J, Foroni L, Milojkovic D, et al. Predictive value of early molecular response in patients with chronic myeloid leukemia treated with first-line dasatinib. Blood. 2012;120(2):291–4. https://doi.org/10.1182/blood-2012-01-407486.

    Article  CAS  PubMed  Google Scholar 

  30. Jain P, Kantarjian H, Nazha A, O'Brien S, Jabbour E, Romo CG, et al. Early responses predict better outcomes in patients with newly diagnosed chronic myeloid leukemia: results with four tyrosine kinase inhibitor modalities. Blood. 2013;121(24):4867–74. https://doi.org/10.1182/blood-2013-03-490128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–84. https://doi.org/10.1182/blood-2013-05-501569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Malhotra H, Radich J, Garcia-Gonzalez P. Meeting the needs of CML patients in resource-poor countries. Hematology. 2019;2019(1):433–42. https://doi.org/10.1182/hematology.2019000050.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Goldberg SL, Chen L, Guerin A, Macalalad AR, Liu N, Kaminsky M, et al. Association between molecular monitoring and long-term outcomes in chronic myelogenous leukemia patients treated with first line imatinib. Curr Med Res Opin. 2013;29(9):1075–82. https://doi.org/10.1185/03007995.2013.812034.

    Article  CAS  PubMed  Google Scholar 

  34. Guerin A, Chen L, Dea K, Wu EQ, Goldberg SL. Economic benefits of adequate molecular monitoring in patients with chronic myelogenous leukemia. J Med Econ. 2014;17(2):89–98. https://doi.org/10.3111/13696998.2013.862251.

    Article  PubMed  Google Scholar 

  35. Darkow T, Henk HJ, Thomas SK, Feng W, Baladi JF, Goldberg GA, et al. Treatment interruptions and non-adherence with imatinib and associated healthcare costs: a retrospective analysis among managed care patients with chronic myelogenous leukaemia. PharmacoEconomics. 2007;25(6):481–96. doi:2564 [pii]

    Article  CAS  PubMed  Google Scholar 

  36. Marin D, Bazeos A, Mahon F-X, Eliasson L, Milojkovic D, Bua M, et al. Adherence is the critical factor for achieving molecular responses in patients with Chronic Myeloid Leukemia who achieve complete cytogenetic responses on imatinib. J Clin Oncol. 2010;28(14):2381–8. https://doi.org/10.1200/jco.2009.26.3087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ibrahim AR, Eliasson L, Apperley JF, Milojkovic D, Bua M, Szydlo R, et al. Poor adherence is the main reason for loss of CCyR and imatinib failure for chronic myeloid leukemia patients on long-term therapy. Blood. 2011;117(14):3733–6. https://doi.org/10.1182/blood-2010-10-309807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goldberg SL, Cortes JE, Gambacorti-Passerini C, Hehlmann R, Khoury HJ, Michallet M, et al. First-line treatment selection and early monitoring patterns in chronic phase-chronic myeloid leukemia in routine clinical practice: SIMPLICITY. Am J Hematol. 2017;92(11):1214–23. https://doi.org/10.1002/ajh.24887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cross NC, Melo JV, Feng L, Goldman JM. An optimized multiplex polymerase chain reaction (PCR) for detection of BCR-ABL fusion mRNAs in haematological disorders. Leukemia. 1994;8(1):186–9.

    CAS  PubMed  Google Scholar 

  40. Baccarani M, Castagnetti F, Gugliotta G, Rosti G, Soverini S, Albeer A, et al. The proportion of different BCR-ABL1 transcript types in chronic myeloid leukemia. An international overview. Leukemia. 2019; https://doi.org/10.1038/s41375-018-0341-4.

  41. Sharplin K, Altamura H, Taylor K, Wellwood J, Taylor D, Branford S. Chronic myeloid leukaemia: the dangers of not knowing your BCR-ABL1 transcript. Leuk Res. 2019;87:106231. https://doi.org/10.1016/j.leukres.2019.106231.

    Article  CAS  PubMed  Google Scholar 

  42. Hughes T, Branford S. Molecular monitoring of BCR-ABL as a guide to clinical management in chronic myeloid leukaemia. Blood Rev. 2006;20(1):29–41.

    Article  CAS  PubMed  Google Scholar 

  43. Branford S, Fletcher L, Cross NCP, Muller MC, Hochhaus A, Kim D-W, et al. Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trials. Blood. 2008;112(8):3330–8. https://doi.org/10.1182/blood-2008-04-150680.

    Article  CAS  PubMed  Google Scholar 

  44. Muller MC, Cross NCP, Erben P, Schenk T, Hanfstein B, Ernst T, et al. Harmonization of molecular monitoring of CML therapy in Europe. Leukemia. 2009;23(11):1957–63.

    Article  CAS  PubMed  Google Scholar 

  45. White HE, Matejtschuk P, Rigsby P, Gabert J, Lin F, Lynn Wang Y, et al. Establishment of the first World Health Organization International Genetic Reference Panel for quantitation of BCR-ABL mRNA. Blood. 2010;116(22):e111–7. https://doi.org/10.1182/blood-2010-06-291641.

    Article  CAS  PubMed  Google Scholar 

  46. Cross NCP, White HE, Muller MC, Saglio G, Hochhaus A. Standardized definitions of molecular response in chronic myeloid leukemia. Leukemia. 2012;26(10):2172–5.

    Article  CAS  PubMed  Google Scholar 

  47. Cross NC, White HE, Colomer D, Ehrencrona H, Foroni L, Gottardi E, et al. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia. 2015;29(5):999–1003. https://doi.org/10.1038/leu.2015.29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cross NC, White HE, Ernst T, Welden L, Dietz C, Saglio G, et al. Development and evaluation of a secondary reference panel for BCR-ABL1 quantification on the International Scale. Leukemia. 2016;30(9):1844–52. https://doi.org/10.1038/leu.2016.90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cross NCP, White HE, Evans PAS, Hancock J, Copland M, Milojkovic D, et al. Consensus on BCR-ABL1 reporting in chronic myeloid leukaemia in the UK. Br J Haematol. 2018;182(6):777–88. https://doi.org/10.1111/bjh.15542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Langabeer SE. Standardized molecular monitoring for variant BCR-ABL1 transcripts in chronic myeloid leukemia. Arch Pathol Lab Med. 2015;139(8):969. https://doi.org/10.5858/arpa.2014-0522-LE.

    Article  PubMed  Google Scholar 

  51. Pfeifer H, Cazzaniga G, van der Velden VHJ, Cayuela JM, Schafer B, Spinelli O, et al. Standardisation and consensus guidelines for minimal residual disease assessment in Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL) by real-time quantitative reverse transcriptase PCR of e1a2 BCR-ABL1. Leukemia. 2019;33(8):1910–22. https://doi.org/10.1038/s41375-019-0413-0.

    Article  CAS  PubMed  Google Scholar 

  52. Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Bartley PA, et al. Patients with chronic myeloid leukemia who maintain a complete molecular response after stopping imatinib treatment have evidence of persistent leukemia by DNA PCR. Leukemia. 2010;24(10):1719–24. https://doi.org/10.1038/leu.2010.185.

    Article  CAS  PubMed  Google Scholar 

  53. Mattarucchi E, Spinelli O, Rambaldi A, Pasquali F, Lo Curto F, Campiotti L, et al. Molecular monitoring of residual disease in chronic myeloid leukemia by genomic DNA compared with conventional mRNA analysis. J Mol Diagn: JMD. 2009;11(5):482–7. https://doi.org/10.2353/jmoldx.2009.080150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bartley PA, Latham S, Budgen B, Ross DM, Hughes E, Branford S, et al. A DNA real-time quantitative PCR method suitable for routine monitoring of low levels of minimal residual disease in chronic myeloid leukemia. J Mol Diagn: JMD. 2015;17(2):185–92. https://doi.org/10.1016/j.jmoldx.2014.10.002.

    Article  CAS  PubMed  Google Scholar 

  55. Alikian M, Ellery P, Forbes M, Gerrard G, Kasperaviciute D, Sosinsky A, et al. Next-generation sequencing-assisted DNA-based digital PCR for a personalized approach to the detection and quantification of residual disease in chronic myeloid leukemia patients. J Mol Diagn: JMD. 2016;18(2):176–89. https://doi.org/10.1016/j.jmoldx.2015.09.005.

    Article  CAS  PubMed  Google Scholar 

  56. Machova Polakova K, Zizkova H, Zuna J, Motlova E, Hovorkova L, Gottschalk A, et al. Analysis of chronic myeloid leukaemia during deep molecular response by genomic PCR: a traffic light stratification model with impact on treatment-free remission. Leukemia. 2020; https://doi.org/10.1038/s41375-020-0882-1.

  57. Pagani IS, Dang P, Saunders VA, Braley J, Thieleke A, Branford S, et al. Clinical utility of genomic DNA Q-PCR for the monitoring of a patient with atypical e19a2 BCR-ABL1 transcripts in chronic myeloid leukemia. Leuk Lymphoma. 2020:1–3. https://doi.org/10.1080/10428194.2020.1772476.

  58. Branford S, Yeung DT, Ross DM, Prime JA, Field CR, Altamura HK, et al. Early molecular response and female sex strongly predict stable undetectable BCR-ABL1, the criteria for imatinib discontinuation in patients with CML. Blood. 2013;121(19):3818–24. https://doi.org/10.1182/blood-2012-10-462291.

    Article  CAS  PubMed  Google Scholar 

  59. Hughes TP, Saglio G, Kantarjian HM, Guilhot F, Niederwieser D, Rosti G, et al. Early molecular response predicts outcomes in patients with chronic myeloid leukemia in chronic phase treated with frontline nilotinib or imatinib. Blood. 2014;123(9):1353–60. https://doi.org/10.1182/blood-2013-06-510396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lapusan S, Yong A, Savani BN, Mohty M. Achieving early molecular response in chronic myeloid leukemia in chronic phase to reduce the risk of progression: clinical relevance of the 3- and 6-month time points. Eur J Haematol. 2015;95(2):103–12. https://doi.org/10.1111/ejh.12453.

    Article  PubMed  Google Scholar 

  61. Boquimpani C, Schaffel R, Biasoli I, Bendit I, Spector N. Molecular responses at 3 and 6 months after switching to a second-generation tyrosine kinase inhibitor are complementary and predictive of long-term outcomes in patients with chronic myeloid leukemia who fail imatinib. Leuk Lymphoma. 2015;56(6):1787–92. https://doi.org/10.3109/10428194.2014.974047.

    Article  CAS  PubMed  Google Scholar 

  62. Fava C, Rege-Cambrin G, Dogliotti I, Gottardi E, Berchialla P, Di Gioacchino B, et al. Early BCR-ABL1 reduction is predictive of better event-free survival in patients with newly diagnosed chronic myeloid leukemia treated with any tyrosine kinase inhibitor. Clin Lymphoma Myeloma Leuk. 2016;16(Suppl):S96–S100. https://doi.org/10.1016/j.clml.2016.03.008.

    Article  PubMed  Google Scholar 

  63. Branford S, Yeung DT, Parker WT, Roberts ND, Purins L, Braley JA, et al. Prognosis for patients with CML and >10% BCR-ABL1 after 3 months of imatinib depends on the rate of BCR-ABL1 decline. Blood. 2014;124(4):511–8. https://doi.org/10.1182/blood-2014-03-566323.

    Article  CAS  PubMed  Google Scholar 

  64. Hehlmann R, Lauseker M, Jung-Munkwitz S, Leitner A, Muller MC, Pletsch N, et al. Tolerability-adapted imatinib 800 mg/d versus 400 mg/d versus 400 mg/d plus interferon-alpha in newly diagnosed chronic myeloid leukemia. J Clin Oncol. 2011;29(12):1634–42. https://doi.org/10.1200/JCO.2010.32.0598.

    Article  CAS  PubMed  Google Scholar 

  65. Hehlmann R, Lauseker M, Saussele S, Pfirrmann M, Krause S, Kolb HJ, et al. Assessment of imatinib as first-line treatment of chronic myeloid leukemia: 10-year survival results of the randomized CML study IV and impact of non-CML determinants. Leukemia. 2017;31(11):2398–406. https://doi.org/10.1038/leu.2017.253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, et al. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med. 2017;376(10):917–27. https://doi.org/10.1056/NEJMoa1609324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Neelakantan P, Gerrard G, Lucas C, Milojkovic D, May P, Wang L, et al. Combining BCR-ABL1 transcript levels at 3 and 6 months in chronic myeloid leukemia: implications for early intervention strategies. Blood. 2013;121(14):2739–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jabbour E, Kantarjian HM, Saglio G, Steegmann JL, Shah NP, Boque C, et al. Early response with dasatinib or imatinib in chronic myeloid leukemia: 3-year follow-up from a randomized phase 3 trial (DASISION). Blood. 2014;123(4):494–500. https://doi.org/10.1182/blood-2013-06-511592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hanfstein B, Shlyakhto V, Lauseker M, Hehlmann R, Saussele S, Dietz C, et al. Velocity of early BCR-ABL transcript elimination as an optimized predictor of outcome in chronic myeloid leukemia (CML) patients in chronic phase on treatment with imatinib. Leukemia. 2014;28(10):1988–92.

    Article  CAS  PubMed  Google Scholar 

  70. Pfirrmann M, Hochhaus A, Lauseker M, Sausele S, Hehlmann R, Hasford J. Recommendations to meet statistical challenges arising from endpoints beyond overall survival in clinical trials on chronic myeloid leukemia. Leukemia. 2011;25(9):1433–8.

    Article  CAS  PubMed  Google Scholar 

  71. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N, et al. Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe against Cancer program. Leukemia. 2003;17(12):2318–57.

    Article  CAS  PubMed  Google Scholar 

  72. Emig M, Saussele S, Wittor H, Weisser A, Reiter A, Willer A, et al. Accurate and rapid analysis of residual disease in patients with CML using specific fluorescent hybridization probes for real time quantitative RT-PCR. Leukemia. 1999;13(11):1825–32.

    Article  CAS  PubMed  Google Scholar 

  73. Schoch C, Schnittger S, Bursch S, Gerstner D, Hochhaus A, Berger U, et al. Comparison of chromosome banding analysis, interphase- and hypermetaphase-FISH, qualitative and quantitative PCR for diagnosis and for follow-up in chronic myeloid leukemia: a study on 350 cases. Leukemia. 2002;16(1):53–9.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang J, Wang Y, Wang J, Hu J, Chen S, Jin J, et al. Early BCR-ABL1 decline in imatinib-treated patients with chronic myeloid leukemia: results from a multicenter study of the Chinese CML alliance. Blood Cancer J. 2018;8(7):61. https://doi.org/10.1038/s41408-018-0093-4.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Stuckey R, Casado LF, Colomer D, Gomez-Casares MT, Casas L, Garcia-Gutierrez V, et al. Early prediction of subsequent molecular response to nilotinib in patients with chronic myeloid leukemia: comparison of the quantification of BCR-ABL1 ratios using ABL1 or GUSB control genes. J Mol Diagn: JMD. 2020;22(10):1217–24. https://doi.org/10.1016/j.jmoldx.2020.06.016.

    Article  CAS  PubMed  Google Scholar 

  76. Huet S, Cony-Makhoul P, Heiblig M, Tigaud I, Gazzo S, Belhabri A, et al. Major molecular response achievement in CML patients can be predicted by BCR-ABL1/ABL1 or BCR-ABL1/GUS ratio at an earlier time point of follow-up than currently recommended. PLoS One. 2014;9(9):e106250. https://doi.org/10.1371/journal.pone.0106250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pennisi MS, Stella S, Vitale SR, Puma A, Di Gregorio S, Romano C, et al. BCR-ABL1 Doubling-Times and Halving-Times May Predict CML Response to Tyrosine Kinase Inhibitors. Front Oncol. 2019;9:764. https://doi.org/10.3389/fonc.2019.00764.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Karpurmath SV, Seshachalam A, Selvaraj K, Rajamani P, Satish K, Reddy N, et al. Halving time of BCR-ABL1 in Chronic Myeloid Leukemia, Is it a better bet than day 90 value—Multicenter study from south India. Clin Lymphoma Myeloma Leuk. 2019; https://doi.org/10.1016/j.clml.2019.09.606.

  79. Mahon FX, Rea D, Guilhot J, Guilhot F, Huguet F, Nicolini F, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre stop imatinib (STIM) trial. Lancet Oncol. 2010;11(11):1029–35. https://doi.org/10.1016/S1470-2045(10)70233-3.

    Article  CAS  PubMed  Google Scholar 

  80. Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Yeung DT, et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood. 2013;122(4):515–22. https://doi.org/10.1182/blood-2013-02-483750.

    Article  CAS  PubMed  Google Scholar 

  81. Rea D, Nicolini FE, Tulliez M, Guilhot F, Guilhot J, Guerci-Bresler A, et al. Discontinuation of dasatinib or nilotinib in chronic myeloid leukemia: interim analysis of the STOP 2G-TKI study. Blood. 2017;129(7):846–54. https://doi.org/10.1182/blood-2016-09-742205.

    Article  CAS  PubMed  Google Scholar 

  82. Mahon F, Boquimpani C, Kim D, et al. Treatment-free remission after second-line nilotinib treatment in patients with chronic myeloid leukemia in chronic phase: results from a single-group, phase 2, open-label study. Ann Intern Med. 2018;168(7):461–70. https://doi.org/10.7326/M17-1094.

    Article  PubMed  Google Scholar 

  83. Clark RE, Polydoros F, Apperley JF, Milojkovic D, Rothwell K, Pocock C, et al. De-escalation of tyrosine kinase inhibitor therapy before complete treatment discontinuation in patients with chronic myeloid leukaemia (DESTINY): a non-randomised, phase 2 trial. Lancet Haematol. 2019;6(7):e375–e83. https://doi.org/10.1016/S2352-3026(19)30094-8.

    Article  PubMed  Google Scholar 

  84. Rousselot P, Charbonnier A, Cony-Makhoul P, Agape P, Nicolini FE, Varet B, et al. Loss of major molecular response as a trigger for restarting tyrosine kinase inhibitor therapy in patients with chronic-phase chronic myelogenous leukemia who have stopped imatinib after durable undetectable disease. J Clin Oncol. 2014;32(5):424–30. https://doi.org/10.1200/JCO.2012.48.5797.

    Article  CAS  PubMed  Google Scholar 

  85. Lee SE, Choi SY, Song HY, Kim SH, Choi MY, Park JS, et al. Imatinib withdrawal syndrome and longer duration of imatinib have a close association with a lower molecular relapse after treatment discontinuation: the KID study. Haematologica. 2016;101(6):717–23. https://doi.org/10.3324/haematol.2015.139899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hochhaus A, Masszi T, Giles FJ, Radich JP, Ross DM, Gomez Casares MT, et al. Treatment-free remission following frontline nilotinib in patients with chronic myeloid leukemia in chronic phase: results from the ENESTfreedom study. Leukemia. 2017;31(7):1525–31. https://doi.org/10.1038/leu.2017.63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Saussele S, Richter J, Guilhot J, Gruber FX, Hjorth-Hansen H, Almeida A, et al. Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI): a prespecified interim analysis of a prospective, multicentre, non-randomised, trial. Lancet Oncol. 2018;19(6):747–57. https://doi.org/10.1016/S1470-2045(18)30192-X.

    Article  CAS  PubMed  Google Scholar 

  88. Shah NP, Garcia-Gutierrez V, Jimenez-Velasco A, Larson S, Saussele S, Rea D, et al. Dasatinib discontinuation in patients with chronic-phase chronic myeloid leukemia and stable deep molecular response: the DASFREE study. Leuk Lymphoma. 2020;61(3):650–9. https://doi.org/10.1080/10428194.2019.1675879.

    Article  CAS  PubMed  Google Scholar 

  89. Saussele S, Hehlmann R, Fabarius A, Jeromin S, Proetel U, Rinaldetti S, et al. Defining therapy goals for major molecular remission in chronic myeloid leukemia: results of the randomized CML study IV. Leukemia. 2018;32(5):1222–8. https://doi.org/10.1038/s41375-018-0055-7.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Radich JP, Deininger M, Abboud CN, Altman JK, Berman E, Bhatia R, et al. Chronic myeloid leukemia, version 1.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw. 2018;16(9):1108–35. https://doi.org/10.6004/jnccn.2018.0071.

    Article  Google Scholar 

  91. Lucas CM, Harris RJ, Giannoudis A, Davies A, Knight K, Watmough SJ, et al. Chronic myeloid leukemia patients with the e13a2 BCR-ABL fusion transcript have inferior responses to imatinib compared to patients with the e14a2 transcript. Haematologica. 2009;94(10):1362–7. https://doi.org/10.3324/haematol.2009.009134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Castagnetti F, Gugliotta G, Palandri F, Breccia M, Stagno F, Levato L, et al. The BCR-ABL1 Transcript Type Does Not Influence the Response and the Outcome of Chronic Myeloid Leukemia Patients Treated Frontline with Nilotinib. ASH Annual Meeting Abstracts. 2012;120(21):1680.

    Google Scholar 

  93. Hanfstein B, Lauseker M, Hehlmann R, Saussele S, Erben P, Dietz C, et al. Distinct characteristics of e13a2 versus e14a2 BCR-ABL1 driven chronic myeloid leukemia under first-line therapy with imatinib. Haematologica. 2014;99(9):1441–7. https://doi.org/10.3324/haematol.2013.096537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dmytrenko IV, Fedorenko VG, Shlyakhtychenko TY, Sholoyko VV, Lyubarets TF, Malinkina TV, et al. Assessment of response to imatinib therapy in patients with chronic myeloid leukemia with e13a2 and e14a2 transcripts of BCR/ABL1 gene. Probl Radiat Med Radiobiol. 2015;20:328–40.

    Article  CAS  Google Scholar 

  95. Lin H-XX, Sjaarda J, Dyck J, Stringer R, Hillis C, Harvey M, et al. Gender and BCR-ABL transcript type are correlated with molecular response to imatinib treatment in patients with chronic myeloid leukemia. Eur J Haematol. 2016;96(4):360–6. https://doi.org/10.1111/ejh.12597.

    Article  CAS  PubMed  Google Scholar 

  96. Pagnano KBB, Miranda EC, Delamain MT, Duarte GO, de Paula EV, Lorand-Metze I, et al. Influence of BCR-ABL transcript type on outcome in patients with chronic-phase chronic myeloid leukemia treated with imatinib. Clin Lymphoma Myeloma Leuk. 2017;17(11):728–33. https://doi.org/10.1016/j.clml.2017.06.009.

    Article  PubMed  Google Scholar 

  97. Greenfield G, McMullan R, Robson N, McGimpsey J, Catherwood M, McMullin MF. Response to Imatinib therapy is inferior for e13a2 BCR-ABL1 transcript type in comparison to e14a2 transcript type in chronic myeloid leukaemia. BMC Hematol. 2019;19(1):7. https://doi.org/10.1186/s12878-019-0139-2.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sharma P, Kumar L, Mohanty S, Kochupillai V. Response to Imatinib mesylate in chronic myeloid leukemia patients with variant BCR-ABL fusion transcripts. Ann Hematol. 2010;89(3):241–7. https://doi.org/10.1007/s00277-009-0822-7.

    Article  CAS  PubMed  Google Scholar 

  99. Jain P, Kantarjian H, Patel KP, Gonzalez GN, Luthra R, Shamanna RK, et al. Impact of BCR-ABL transcript type on outcome in patients with chronic-phase CML treated with tyrosine kinase inhibitors. Blood. 2016;127(10):1269–75. https://doi.org/10.1182/blood-2015-10-674242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Castagnetti F, Gugliotta G, Breccia M, Iurlo A, Levato L, Albano F, et al. The BCR-ABL1 transcript type influences response and outcome in Philadelphia chromosome-positive chronic myeloid leukemia patients treated frontline with imatinib. Am J Hematol. 2017;92(8):797–805. https://doi.org/10.1002/ajh.24774.

    Article  CAS  PubMed  Google Scholar 

  101. Marum JE, Branford S. Current developments in molecular monitoring in chronic myeloid leukemia. Ther Adv Hematol. 2016;7(5):237–51. https://doi.org/10.1177/2040620716657994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Birrell GW, JRRJJTMFL. Exon skipping in the ATM gene in normal individuals: the effect of blood sample storage on RT-PCR analysis. Hum Mutat. 2001;17(1):75–6.

    Article  CAS  PubMed  Google Scholar 

  103. Etienne G, Dulucq S, Bauduer F, Adiko D, Lifermann F, Dagada C, et al. Incidences of Deep Molecular Responses and Treatment-Free Remission in de Novo CP-CML Patients. Cancers (Basel). 2020;12:9. https://doi.org/10.3390/cancers12092521.

    Article  CAS  Google Scholar 

  104. D'Adda M, Farina M, Schieppati F, Borlenghi E, Bottelli C, Cerqui E, et al. The e13a2 BCR-ABL transcript negatively affects sustained deep molecular response and the achievement of treatment-free remission in patients with chronic myeloid leukemia who receive tyrosine kinase inhibitors. Cancer. 2019;125(10):1674–82. https://doi.org/10.1002/cncr.31977.

    Article  CAS  PubMed  Google Scholar 

  105. Claudiani S, Apperley JF, Gale RP, Clark R, Szydlo R, Deplano S, et al. e14a2 BCR-ABL1 transcript is associated with a higher rate of treatment-free remission in individuals with chronic myeloid leukemia after stopping tyrosine kinase inhibitor therapy. Haematologica. 2017;102(8):e297–e9. https://doi.org/10.3324/haematol.2017.168740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Shanmuganathan N, Pagani IS, Ross DM, Park S, Yong AS, Braley JA, et al. Early BCR-ABL1 kinetics are predictive of subsequent achievement of treatment-free remission in chronic myeloid leukemia. Blood. 2021;137:1196–1207. https://doi.org/10.1182/blood.2020005514.

  107. Greiner J, Schmitt M. Leukemia-associated antigens as target structures for a specific immunotherapy in chronic myeloid leukemia. Eur J Haematol. 2008;80(6):461–8. https://doi.org/10.1111/j.1600-0609.2008.01053.x.

    Article  PubMed  Google Scholar 

  108. Rojas JM, Knight K, Wang L, Clark RE. Clinical evaluation of BCR-ABL peptide immunisation in chronic myeloid leukaemia: results of the EPIC study. Leukemia. 2007;21(11):2287–95. https://doi.org/10.1038/sj.leu.2404858.

    Article  CAS  PubMed  Google Scholar 

  109. Nicolini FE, Dulucq S, Boureau L, Cony-Makhoul P, Charbonnier A, Escoffre-Barbe M, et al. Evaluation of residual disease and TKI duration are critical predictive factors for molecular recurrence after stopping Imatinib first-line in chronic phase CML patients. Clin Cancer Res. 2019;25(22):6606–13. https://doi.org/10.1158/1078-0432.CCR-18-3373.

    Article  CAS  PubMed  Google Scholar 

  110. Mori S, Vagge E, le Coutre P, Abruzzese E, Martino B, Pungolino E, et al. Age and dPCR can predict relapse in CML patients who discontinued imatinib: the ISAV study. Am J Hematol. 2015;90(10):910–4. https://doi.org/10.1002/ajh.24120.

    Article  CAS  PubMed  Google Scholar 

  111. Rousselot P, Loiseau C, Delord M, Cayuela JM, Spentchian M. Late molecular recurrences in patients with chronic myeloid leukemia experiencing treatment-free remission. Blood Adv. 2020;4(13):3034–40. https://doi.org/10.1182/bloodadvances.2020001772%JBloodAdvances.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Pagnano KBB. BCR-ABL1 level monitoring in chronic myeloid leukemia by real time polymerase chain reaction in Brazil - not so real. Rev Bras Hematol Hemoter. 2017;39(3):197–8. https://doi.org/10.1016/j.bjhh.2017.05.005.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Yeung DT, Osborn MP, White DL, Branford S, Braley J, Herschtal A, et al. TIDEL-II: first-line use of imatinib in CML with early switch to nilotinib for failure to achieve time-dependent molecular targets. Blood. 2015;125(6):915–23. https://doi.org/10.1182/blood-2014-07-590315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Cortes J, Rousselot P, Kim D-W, Ritchie E, Hamerschlak N, Coutre S, et al. Dasatinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis. Blood. 2007;109(8):3207–13. https://doi.org/10.1182/blood-2006-09-046888.

    Article  CAS  PubMed  Google Scholar 

  115. Giles FJ, le Coutre PD, Pinilla-Ibarz J, Larson RA, Gattermann N, Ottmann OG, et al. Nilotinib in imatinib-resistant or imatinib-intolerant patients with chronic myeloid leukemia in chronic phase: 48-month follow-up results of a phase II study. Leukemia. 2013;27(1):107–12. https://doi.org/10.1038/leu.2012.181.

    Article  CAS  PubMed  Google Scholar 

  116. Shanmuganathan N, Braley JA, Yong ASM, Hiwase DK, Yeung DT, Ross DM, et al. Modeling the safe minimum frequency of molecular monitoring for CML patients attempting treatment-free remission. Blood. 2019;134(1):85–9. https://doi.org/10.1182/blood.2019000120.

    Article  CAS  PubMed  Google Scholar 

  117. Rousselot P, Huguet F, Rea D, Legros L, Cayuela JM, Maarek O, et al. Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood. 2007;109(1):58–60.

    Article  CAS  PubMed  Google Scholar 

  118. Chen Z, Medeiros LJ, Kantajian HM, Zheng L, Gong Z, Patel KP, et al. Differential depth of treatment response required for optimal outcome in patients with blast phase versus chronic phase of chronic myeloid leukemia. Blood Cancer J. 2017;7(2):e521. https://doi.org/10.1038/bcj.2017.4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Arpinati M, Tolomelli G, Bochicchio MT, Castagnetti F, Amabile M, Bandini G, et al. Molecular monitoring of BCR-ABL transcripts after allogeneic stem cell transplantation for chronic myeloid leukemia. Biol Blood Marrow Transplant. 2013;19(5):735–40. https://doi.org/10.1016/j.bbmt.2013.01.007.

    Article  CAS  PubMed  Google Scholar 

  120. Pagani IS, Dang P, Kommers IO, Goyne JM, Nicola M, Saunders VA, et al. BCR-ABL1 genomic DNA PCR response kinetics during first-line imatinib treatment of chronic myeloid leukemia. Haematologica. 2018;103(12):2026–32. https://doi.org/10.3324/haematol.2018.189787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wącław J, Zawada M, Czekalska S, Ochrem B, Sacha T. Comparison of ABL1 and Gusb Reference Genes in the qRT-PCR Analysis of Halving Time and Early Molecular Response to TKI Therapy in Patients with Chronic Myeloid Leukemia. Blood. 2016;128(22):Abstract 5424. https://doi.org/10.1182/blood.V128.22.5424.5424.

    Article  Google Scholar 

  122. Huet S, Cony-Makhoul P, Heiblig M, Tigaud I, Gazzo S, Belhabri A, et al. Major molecular response achievement in CML Patients can be predicted by BCR-ABL1/ABL1 or BCR-ABL1/GUS ratio at an earlier time point of follow-up than currently recommended. PloS One. 2014;9(9):e106250-e. https://doi.org/10.1371/journal.pone.0106250.

    Article  CAS  Google Scholar 

  123. Pritchard J, Lustgarten S, Hodgson J, Baccarani M, Cortes J, Deininger M et al., editors. Analysis of the relationship between dose and BCR-ABL halving time in CP-CML patients treated with ponatinib or imatinib. Poster presented at: 20th European Hematology Association Congress; 2015 Jun 11–14; Vienna, Austria.

    Google Scholar 

  124. Stuckey R, Casado L-F, Colomer D, Gómez-Casares MT, Casas L, García-Gutierrez V, et al. Early prediction of subsequent molecular response to nilotinib in patients with chronic myeloid leukemia: comparison of the quantification of BCR-ABL1 ratios using ABL1 or GUSB control genes. J Mol Diagn. 2020; https://doi.org/10.1016/j.jmoldx.2020.06.016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Branford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Branford, S., Shanmuganathan, N., Hughes, T.P. (2021). Response-Related Predictors of Survival and of Treatment-Free Remission in CML. In: Hehlmann, R. (eds) Chronic Myeloid Leukemia. Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-71913-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71913-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71912-8

  • Online ISBN: 978-3-030-71913-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics