Skip to main content

To Boldly Show What No One Has Seen Before: A Dashboard for Visualizing Multi-objective Landscapes

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2021)

Abstract

Simultaneously visualizing the decision and objective space of continuous multi-objective optimization problems (MOPs) recently provided key contributions in understanding the structure of their landscapes. For the sake of advancing these recent findings, we compiled all state-of-the-art visualization methods in a single R-package (moPLOT). Moreover, we extended these techniques to handle three-dimensional decision spaces and propose two solutions for visualizing the resulting volume of data points. This enables – for the first time – to illustrate the landscape structures of three-dimensional MOPs.

However, creating these visualizations using the aforementioned framework still lays behind a high barrier of entry for many people as it requires basic skills in R. To enable any user to create and explore MOP landscapes using moPLOT, we additionally provide a dashboard that allows to compute the state-of-the-art visualizations for a wide variety of common benchmark functions through an interactive (web-based) user interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that we focus here on the case where the box constraints are inactive. Some discussion of how to handle the decision boundary can be found, e.g., in [20].

  2. 2.

    A level set of a function \(f:\mathbb {R}^n\rightarrow \mathbb {R}\) w.r.t. value \(c\in \mathbb {R}\) is the set of points \(\{(x_1,\dots ,x_n)\in \mathbb {R}^n:f(x_1,\dots ,x_n) =c\}\). The isosurface is a 3D level set.

References

  1. Aspar, P., Kerschke, P., Steinhoff, V., Trautmann, H., Grimme, C.: Multi\(^3\): optimizing multimodal single-objective continuous problems in the multi-objective space by means of multiobjectivization. In: Ishibuchi, H., et al. (eds.) Proceedings of the 11th International Conference on Evolutionary Multi-Criterion Optimization (EMO), EMO 2021, LNCS 12654, pp. 311–322. Springer, Cham (2021)

    Google Scholar 

  2. Bossek, J.: smoof: single- and multi-objective optimization test functions. R J. 9, 103 (2017)

    Article  Google Scholar 

  3. Chang, W., Cheng, J., Allaire, J., Xie, Y., McPherson, J.: shiny: web Application Framework for R (2020). https://CRAN.R-project.org/package=shiny, R package version 1.5.0

  4. Chong, M.S., Perry, A.E., Cantwell, B.J.: A general classification of three-dimensional flow fields. Phys. Fluids A: Fluid Dyn. 2(5), 765–777 (1990)

    Article  MathSciNet  Google Scholar 

  5. Coello Coello, C.A., van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-36797-2

    Book  MATH  Google Scholar 

  6. da Fonseca, C.M.M.: Multiobjective Genetic Algorithms with Application to Control Engineering Problems. Ph.D. Thesis, Department of Automatic Control and Systems Engineering, University of Sheffield, September 1995

    Google Scholar 

  7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Advanced Information and Knowledge Processing, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6

    Chapter  MATH  Google Scholar 

  8. Désidéri, J.A.: Multiple-Gradient Descent Algorithm (MGDA) for multiobjective optimization. C. R. Math. 350(5–6), 313–318 (2012)

    Article  MathSciNet  Google Scholar 

  9. Fieldsend, J.E., Chugh, T., Allmendinger, R., Miettinen, K.: A feature rich distance-based many-objective visualisable test problem generator. In: Proceedings of the 2019 Genetic and Evolutionary Computation Conference (GECCO), pp. 541–549. ACM (2019)

    Google Scholar 

  10. Filipič, B., Tušar, T.: Visualization in multiobjective optimization. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference (GECCO) Companion, pp. 775–800. ACM (2020)

    Google Scholar 

  11. Grimme, C., Kerschke, P., Emmerich, M.T.M., Preuss, M., Deutz, A.H., Trautmann, H.: Sliding to the global optimum: how to benefit from non-global optima in multimodal multi-objective optimization. In: AIP Conference Proceedings, pp. 020052-1-020052-4. AIP Publishing (2019)

    Google Scholar 

  12. Grimme, C., Kerschke, P., Trautmann, H.: Multimodality in multi-objective optimization – more boon than bane? In: Deb, K., et al. (eds.) EMO 2019. LNCS, vol. 11411, pp. 126–138. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12598-1_11

    Chapter  Google Scholar 

  13. Hansen, C.D., Johnson, C.R. (eds.): The Visualization Handbook. Elsevier, Amsterdam (2005)

    Google Scholar 

  14. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-Parameter Black-Box Optimization Benchmarking 2009: Noiseless Functions Definitions. Technical report. RR-6829, INRIA (2009)

    Google Scholar 

  15. Kerschke, P., Grimme, C.: An expedition to multimodal multi-objective optimization landscapes. In: Trautmann, H., et al. (eds.) EMO 2017. LNCS, vol. 10173, pp. 329–343. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54157-0_23

    Chapter  Google Scholar 

  16. Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the Loss Landscape of Neural Nets. In: Advances in Neural Information Processing Systems, pp. 6389–6399 (2018)

    Google Scholar 

  17. Miettinen, K.: Nonlinear Multiobjective Optimization. International Series in Operations Research & Management Science, vol. 12. Springer, Boston (1998). https://doi.org/10.1007/978-1-4615-5563-6_11

    Book  MATH  Google Scholar 

  18. Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A study of NK landscapes’ basins and local optima networks. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 555–562 (2008)

    Google Scholar 

  19. Preuss, M.: Multimodal Optimization by Means of Evolutionary Algorithms. Springer, Cham (2015)

    Book  Google Scholar 

  20. Schäpermeier, L., Grimme, C., Kerschke, P.: One PLOT to show them all: visualization of efficient sets in multi-objective landscapes. In: Bäck, T., Preuss, M., Deutz, A., Wang, H., Doerr, C., Emmerich, M., Trautmann, H. (eds.) PPSN 2020, Part II. LNCS, vol. 12270, pp. 154–167. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58115-2_11

    Chapter  Google Scholar 

  21. Sievert, C.: Interactive Web-Based Data Visualization with R, plotly, and shiny. Chapman and Hall/CRC, London (2020). https://plotly-r.com

    Book  Google Scholar 

  22. Steinhoff, V., Kerschke, P., Aspar, P., Trautmann, H., Grimme, C.: Multiobjectivization of local search: single-objective optimization benefits from multi-objective gradient descent. In: Proceedings of the IEEE Symposium Series on Computational Intelligence (SSCI), Canberra, Australia (2020)

    Google Scholar 

  23. Tušar, T., Filipič, B.: Visualization of Pareto front approximations in evolutionary multiobjective optimization: a critical review and the prosection method. IEEE Trans. Evol. Comput. (TEVC) 19(2), 225–245 (2015)

    Article  Google Scholar 

  24. Tušar, T., Brockhoff, D., Hansen, N., Auger, A.: COCO: The Bi-Objective Black Box Optimization Benchmarking (bbob-biobj) Test Suite. arXiv preprint abs/1604.00359 (2016)

  25. Udupa, J., Herman, G.: Display of 3-D digital images: computational foundations and medical applications. IEEE Comput. Graph. Appl. 3(05), 39–46 (1983)

    Article  Google Scholar 

  26. Wessing, S.: The Multiple Peaks Model 2. Technical report TR15-2-001, TU Dortmund University, Germany (2015)

    Google Scholar 

  27. Wickham, H.: ggplot2: Elegant Graphics for Data Analysis. Springer, New York (2016). https://doi.org/10.1007/978-0-387-98141-3. https://ggplot2.tidyverse.org

    Book  MATH  Google Scholar 

  28. Yue, C., Qu, B., Yu, K., Liang, J., Li, X.: A novel scalable test problem suite for multimodal multiobjective optimization. Swarm Evol. Comput. 48, 62–71 (2019)

    Article  Google Scholar 

  29. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by the European Research Center for Information Systems (ERCIS) .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennart Schäpermeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schäpermeier, L., Grimme, C., Kerschke, P. (2021). To Boldly Show What No One Has Seen Before: A Dashboard for Visualizing Multi-objective Landscapes. In: Ishibuchi, H., et al. Evolutionary Multi-Criterion Optimization. EMO 2021. Lecture Notes in Computer Science(), vol 12654. Springer, Cham. https://doi.org/10.1007/978-3-030-72062-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72062-9_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72061-2

  • Online ISBN: 978-3-030-72062-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics