Skip to main content

A New Noise Generating Method Based on Gaussian Sampling for Privacy Preservation

  • Conference paper
  • First Online:
Geometry and Vision (ISGV 2021)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1386))

Included in the following conference series:

  • 774 Accesses

Abstract

Centralised machine learning brings in side effect pertaining to privacy preservation, most of machine learning methods prone to using the frameworks without privacy protection, as current methods for privacy preservation will slow down model training and testing. In order to resolve this problem, we develop a new noise generating method based on information entropy by using differential privacy for betterment the privacy protection which owns the architecture of federated machine learning. Our experiments unveil that this solution effectively preserves privacy in the vein of centralized federated learning. The gained accuracy is promising which has a room to be uplifted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L.: Deep learning with differential privacy. In: Proceedings of ACM SIGSAC Conference on Computer and Communications Security, pp. 308–318 (2016)

    Google Scholar 

  2. Agarwal, N., Suresh, A.T., Yu, F.X.X., Kumar, S., McMahan, B.: CPSGD: communication-efficient and differentially-private distributed SGD. In: Advances in Neural Information Processing Systems, pp. 7564–7575 (2018)

    Google Scholar 

  3. Aggarwal, C.C., Yu, P.S.: A general survey of privacy-preserving data mining models and algorithms. In: Aggarwal, C.C., Yu, P.S. (eds.) Privacy-Preserving Data Mining. Advances in Database Systems, vol. 34, pp. 11–52. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-70992-5_2

    Chapter  Google Scholar 

  4. Chaudhuri, K., Monteleoni, C.: Privacy-preserving logistic regression. In: Advances in Neural Information Processing Systems, pp. 289–296 (2009)

    Google Scholar 

  5. De Brabanter, J., De Moor, B., Suykens, J.A., Van Gestel, T., Vandewalle, J.P.: Least Squares Support Vector Machines. World Scientific, Singapore (2002)

    MATH  Google Scholar 

  6. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14

    Chapter  Google Scholar 

  7. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

    Chapter  MATH  Google Scholar 

  8. Hsieh, F.Y., Bloch, D.A., Larsen, M.D.: A simple method of sample size calculation for linear and logistic regression. Stat. Med. 17(14), 1623–1634 (1998)

    Article  Google Scholar 

  9. Krizhevsky, A., Nair, V., Hinton, G.: The CIFAR-10 Dataset, vol. 55 (2014). http://www.cs.toronto.edu/kriz/cifar.html

  10. Lee, S., Rao, R., Narasimha, R.: Characterization of self-similarity properties of discrete-time linear scale-invariant systems. In: IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221), vol. 6, pp. 3969–3972. IEEE (2001)

    Google Scholar 

  11. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  12. Lou, Y., Yu, L., Wang, S., Yi, P.: Privacy preservation in distributed subgradient optimization algorithms. IEEE Trans. Cybern. 48(7), 2154–2165 (2017)

    Article  Google Scholar 

  13. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: \(l\)-diversity: privacy beyond \(k\)-anonymity. ACM Trans. Knowl. Discov. Data (TKDD) 1(1), 3-es (2007)

    Google Scholar 

  14. Margineantu, D.D., Dietterich, T.G.: Pruning adaptive boosting. In: International Conference on Machine Learning, vol. 97, pp. 211–218. ICML (1997)

    Google Scholar 

  15. Richards, M.A.: Coherent integration loss due to white Gaussian phase noise. IEEE Sig. Process. Lett. 10(7), 208–210 (2003)

    Article  Google Scholar 

  16. Shabtai, A., Elovici, Y., Rokach, L.: A Survey of Data Leakage Detection and Prevention Solutions. Springer, Boston (2012). https://doi.org/10.1007/978-1-4614-2053-8

    Book  Google Scholar 

  17. Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321 (2015)

    Google Scholar 

  18. Sweeney, L.: \(k\)-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(05), 557–570 (2002)

    Article  MathSciNet  Google Scholar 

  19. Vapnik, V.: Principles of risk minimization for learning theory. In: Advances in Neural Information Processing Systems, pp. 831–838 (1992)

    Google Scholar 

  20. Whittle, P.: Estimation and information in stationary time series. Arkiv för matematik 2(5), 423–434 (1953)

    Article  MathSciNet  Google Scholar 

  21. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst. 2(1–3), 37–52 (1987)

    Article  Google Scholar 

  22. Wombacher, A.: Data workflow-a workflow model for continuous data processing. Data Process. (2010)

    Google Scholar 

  23. Zhu, Y., Liu, L.: Optimal randomization for privacy preserving data mining. In: Proceedings of the Tenth ACM SIGKDD, pp. 761–766 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, B., Yan, W.Q., Lai, E., Wu, J. (2021). A New Noise Generating Method Based on Gaussian Sampling for Privacy Preservation. In: Nguyen, M., Yan, W.Q., Ho, H. (eds) Geometry and Vision. ISGV 2021. Communications in Computer and Information Science, vol 1386. Springer, Cham. https://doi.org/10.1007/978-3-030-72073-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72073-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72072-8

  • Online ISBN: 978-3-030-72073-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics