Skip to main content

Spatio-Temporal Learning from Longitudinal Data for Multiple Sclerosis Lesion Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12658))

Included in the following conference series:

Abstract

Segmentation of Multiple Sclerosis (MS) lesions in longitudinal brain MR scans is performed for monitoring the progression of MS lesions. We hypothesize that the spatio-temporal cues in longitudinal data can aid the segmentation algorithm. Therefore, we propose a multi-task learning approach by defining an auxiliary self-supervised task of deformable registration between two time-points to guide the neural network toward learning from spatio-temporal changes. We show the efficacy of our method on a clinical dataset comprised of 70 patients with one follow-up study for each patient. Our results show that spatio-temporal information in longitudinal data is a beneficial cue for improving segmentation. We improve the result of current state-of-the-art by 2.6% in terms of overall score (p < 0.05). Code is publicly available (https://github.com/StefanDenn3r/Spatio-temporal-MS-Lesion-Segmentation).

S. Denner and A. Khakzar—First two authors contributed equally to this work.

S. T. Kim and N. Navab—Share senior authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andermatt, S., Pezold, S., Cattin, P.C.: Automated segmentation of multiple sclerosis lesions using multi-dimensional gated recurrent units. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 31–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_3

    Chapter  Google Scholar 

  2. Aslani, S., Dayan, M., Storelli, L., Filippi, M., Murino, V., Rocca, M.A., Sona, D.: Multi-branch convolutional neural network for multiple sclerosis lesion segmentation. NeuroImage 196, 1–15 (2019)

    Article  Google Scholar 

  3. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Dalca, A.V., Guttag, J.: An unsupervised learning model for deformable medical image registration. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2018). https://doi.org/10.1109/CVPR.2018.00964

  4. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging (2019). https://doi.org/10.1109/TMI.2019.2897538

    Article  Google Scholar 

  5. Birenbaum, A., Greenspan, H.: Longitudinal multiple sclerosis lesion segmentation using multi-view convolutional neural networks. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 58–67. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_7

    Chapter  Google Scholar 

  6. Carass, A., et al.: Longitudinal multiple sclerosis lesion segmentation: resource and challenge. NeuroImage 148, 77–102 (2017)

    Article  Google Scholar 

  7. Cardoso, M.J., et al.: Geodesic information flows: spatially-variant graphs and their application to segmentation and fusion. IEEE Trans. Med. Imaging 34(9), 1976–1988 (2015)

    Article  Google Scholar 

  8. Chen, Z., Badrinarayanan, V., Lee, C.Y., Rabinovich, A.: GradNorm: gradient normalization for adaptive loss balancing in deep multitask networks. In: 35th International Conference on Machine Learning, ICML 2018 (2018)

    Google Scholar 

  9. Compston, A., Coles, A.: Multiple sclerosis (2008). https://doi.org/10.1016/S0140-6736(08)61620-7

  10. Galimzianova, A., Pernuš, F., Likar, B., Špiclin, Ž: Stratified mixture modeling for segmentation of white-matter lesions in brain MR images. NeuroImage 124, 1031–1043 (2016)

    Article  Google Scholar 

  11. Ghafoorian, M., Platel, B.: Convolutional neural networks for MS lesion segmentation, method description of diag team. In: Proceedings of the 2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge, pp. 1–2 (2015)

    Google Scholar 

  12. Hashemi, S.R., Salehi, S.S.M., Erdogmus, D., Prabhu, S.P., Warfield, S.K., Gholipour, A.: Asymmetric loss functions and deep densely-connected networks for highly-imbalanced medical image segmentation: application to multiple sclerosis lesion detection. IEEE Access 7, 1721–1735 (2018)

    Article  Google Scholar 

  13. Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 11–19 (2017)

    Google Scholar 

  14. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W.: elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)

    Article  Google Scholar 

  15. Lesjak, Ž, et al.: A novel public MR image dataset of multiple sclerosis patients with lesion segmentations based on multi-rater consensus. Neuroinformatics 16(1), 51–63 (2018)

    Article  Google Scholar 

  16. Manjón, J.V., Coupé, P., Buades, A., Louis Collins, D., Robles, M.: New methods for MRI denoising based on sparseness and self-similarity. Med. Image Anal. 16(1), 18–27 (2012). https://doi.org/10.1016/j.media.2011.04.003. http://www.sciencedirect.com/science/article/pii/S1361841511000491

  17. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035 (2019)

    Google Scholar 

  18. Reddi, S.J., Kale, S., Kumar, S.: On the convergence of Adam and beyond (2018)

    Google Scholar 

  19. Roth, H.R., et al.: A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8673, pp. 520–527. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10404-1_65

    Chapter  Google Scholar 

  20. Roy, A.G., Conjeti, S., Navab, N., Wachinger, C., Initiative, A.D.N., et al.: QuickNAT: a fully convolutional network for quick and accurate segmentation of neuroanatomy. NeuroImage 186, 713–727 (2019)

    Article  Google Scholar 

  21. Stangel, M., Penner, I.K., Kallmann, B.A., Lukas, C., Kieseier, B.C.: Towards the implementation of ‘no evidence of disease activity’ in multiple sclerosis treatment: the multiple sclerosis decision model. Therap. Adv. Neurol. Disord. 8(1), 3–13 (2015)

    Article  Google Scholar 

  22. Steinman, L.: Multiple sclerosis: A coordinated immunological attack against myelin in the central nervous system (1996). https://doi.org/10.1016/S0092-8674(00)81107-1

  23. Styner, M., et al.: 3D segmentation in the clinic: a grand challenge II: MS lesion segmentation. Midas J. 2008, 1–6 (2008)

    Google Scholar 

  24. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)

    Article  Google Scholar 

  25. Uher, T., et al.: Combining clinical and magnetic resonance imaging markers enhances prediction of 12-year disability in multiple sclerosis. Multiple Sclerosis 23(1), 51–61 (2017)

    Article  Google Scholar 

  26. Valverde, S., et al.: Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. NeuroImage 155, 159–168 (2017)

    Article  Google Scholar 

  27. Wachinger, C., Reuter, M., Klein, T.: DeepNAT: deep convolutional neural network for segmenting neuroanatomy. NeuroImage 170, 434–445 (2018)

    Article  Google Scholar 

  28. Xu, Z., Niethammer, M.: DeepAtlas: joint semi-supervised learning of image registration and segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 420–429. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_47

    Chapter  Google Scholar 

  29. Zhang, H., et al.: Multiple sclerosis lesion segmentation with tiramisu and 2.5D stacked slices. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 338–346. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_38

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support for this work by Siemens Healthineers and Munich Center for Machine Learning (MCML). Ziga Spiclin was supported by the Slovenian Research Agency (research core funding No. P2-0232, and research grant No. J2-2500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Tae Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Denner, S. et al. (2021). Spatio-Temporal Learning from Longitudinal Data for Multiple Sclerosis Lesion Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2020. Lecture Notes in Computer Science(), vol 12658. Springer, Cham. https://doi.org/10.1007/978-3-030-72084-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72084-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72083-4

  • Online ISBN: 978-3-030-72084-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics