Skip to main content

A 5G Network Slice Based Edge Access Approach with Communication Quality Assurance

  • Conference paper
  • First Online:
Simulation Tools and Techniques (SIMUtools 2020)

Abstract

With the development of various vertical industry services such as autonomous driving, energy Internet, and smart cities, mobile communication networks need to provide users with ubiquitous high-speed access while using limited network resources to provide differentiated and customized services, the 5G network satisfies the requirement of the future . However, for the access network, there are many types services accessing the network. In order to provide users with diverse personalized services, network slicing scheme is introduced into 5G network. Network slicing is based on the technology of network function virtualization, which can establish multiple virtual private networks in the device according to the needs of users. Each slice is a private network, and different virtual networks are kept isolated from each other. This article studies the access network of the 5G network, in order to ensure the quality of user access, we study the mapping scheme of network slices and NFV to ensure the communication quality of access networks of different user types. Finally, we perform some simulations to verify the proposed method, and the result shows that our proposed can ensure the communication quality for the users which connect into the 5G network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo, Y., Wang, Z., Yin, X., et al.: Traffic engineering in hybrid SDN networks with multiple traffic matrices. Comput. Netw. 126, 187–199 (2017)

    Article  Google Scholar 

  2. Liu, G., Guo, S., Zhao, Q., et al.: Tomogravity space based traffic matrix estimation in data center networks. Transp. Res. Part C: Emerg. Technol. 86, 39–50 (2018)

    Google Scholar 

  3. Jiang, D., Wang, Y., Lv, Z., Wang, W., Wang, H.: An energy-efficient networking approach in cloud services for IIoT networks. IEEE J. Sel. Areas Commun. 38(5), 928–941 (2020)

    Article  Google Scholar 

  4. Hashemi, H., Abdelghany, K.F., et al.: Real-time traffic network state estimation and prediction with decision support capabilities: Application to integrated corridor management. Transp. Res. Part C: Emerg. Technol. 73, 128–146 (2016)

    Article  Google Scholar 

  5. Kawasaki, Y., Hara, Y., Kuwahara, M.: Traffic state estimation on a two-dimensional network by a state-space model. Transp. Res. Part C: Emerg. Technol. 5, 1–17 (2019)

    Google Scholar 

  6. Jiang, D., Wang, W., Shi, L., Song, H.: A compressive sensing-based approach to end-to-end network traffic reconstruction. IEEE Trans. Netw. Sci. Eng. 7(1), 507–519 (2020)

    Article  MathSciNet  Google Scholar 

  7. Dias, K.L., Pongelupe, M.A., Caminhas, W.M., et al.: An innovative approach for real-time network traffic classification. Comput. Netw. 158, 143–157 (2019)

    Article  Google Scholar 

  8. Ermagun, A., Levinson, D.: Spatiotemporal short-term traffic forecasting using the network weight matrix and systematic detrending. Transp. Res. Part C: Emerg. Technol. 104(5), 38–52 (2019)

    Article  Google Scholar 

  9. Jiang, D., Huo, L., Li, Y.: Fine-granularity inference and estimations to network traffic for SDN. PLoS ONE 13(5), 1–23 (2018)

    Google Scholar 

  10. Keshavamurthy, P., Pateromichelakis, E., Dahlhaus, D., et al.: Cloud-enabled radio resource management for co-operative driving vehicular networks. In: Proceedings of the WCNC’19, pp. 1–6 (2019)

    Google Scholar 

  11. Wang, Y., Jiang, D., Huo, L., Zhao, Y.: A new traffic prediction algorithm to software defined networking. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01423-3

    Article  Google Scholar 

  12. Qi, S., Jiang, D., Huo, L.: A prediction approach to end-to-end traffic in space information networks. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01424-2

    Article  Google Scholar 

  13. Jiang, D., Zhang, P., Lv, Z., et al.: Energy-efficient multi-constraint routing algorithm with load balancing for smart city applications. IEEE Internet of Things J. 3(6), 1437–1447 (2016)

    Article  Google Scholar 

  14. Li, J., Shen, X., Chen, L., et al.: Service migration in fog computing enabled cellular networks to support real-time vehicular communications. IEEE Access 7(2019), 13704–13714 (2019)

    Article  Google Scholar 

  15. Wang, F., Jiang, D., Qi, S., et al.: A dynamic resource scheduling scheme in edge computing satellite networks. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01421-5

    Article  Google Scholar 

  16. El-sayed, H., Sankar, S., Prasad, M., et al.: Edge of things: the big picture on the integration of edge, IoT and the cloud in a distributed computing environment. IEEE Access 6, 1–12 (2018)

    Article  Google Scholar 

  17. Jiang, D., Huo, L., Song, H.: Rethinking behaviors and activities of base stations in mobile cellular networks based on big data analysis. IEEE Trans. Netw. Sci. Eng. 7(1), 80–90 (2020)

    Article  MathSciNet  Google Scholar 

  18. Zhang, K., Mao, Y., Leng, S., et al.: Mobile-edge computing for vehicular networks. IEEE Veh. Technol. Mag. 12, 36–44 (2017)

    Article  Google Scholar 

  19. Pu, L., Chen, X., Mao, G., et al.: Chimera: an energy-efficient and deadline-aware hybrid edge computing framework for vehicular crowdsensing applications. IEEE Internet of Things J. 6(1), 84–99 (2019)

    Article  Google Scholar 

  20. Jiang, D., Wang, Y., Lv, Z., Qi, S., Singh, S.: Big data analysis based network behavior insight of cellular networks for industry 4.0 applications. IEEE Trans. Ind. Inf. 16(2), 1310–1320 (2020)

    Article  Google Scholar 

  21. Eldjali, C., Lyes, K.: Optimal priority-queuing for EV charging-discharging service based on cloud computing. In: Proceedings of the ICC’17, pp. 1–6 (2017)

    Google Scholar 

  22. Jiang, D., Huo, L., Lv, Z., Song, H., Qin, W.: A joint multi-criteria utility-based network selection approach for vehicle-to-infrastructure networking. IEEE Trans. Intell. Transp. Syst. 19(10), 3305–3319 (2018)

    Article  Google Scholar 

  23. Xie, R., Tang, Q., Wang, Q., et al.: Collaborative vehicular edge computing networks: architecture design and research challenges. IEEE Access 7(2019), 178942–178952 (2019)

    Article  Google Scholar 

  24. Yang, Y., Niu, X., Li, L., et al.: A secure and efficient transmission method in connected vehicular cloud computing. IEEE Netw. 32, 14–19 (2018)

    Article  Google Scholar 

  25. Jiang, D., Li, W., Lv, H.: An energy-efficient cooperative multicast routing in multi-hop wireless networks for smart medical applications. Neurocomputing 2017(220), 160–169 (2017)

    Article  Google Scholar 

  26. Kaur, K., Garg, S., Kaddoum, G., et al.: Demand-response management using a fleet of electric vehicles: an opportunistic-SDN-based edge-cloud framework for smart grids. IEEE Netw. 33, 46–53 (2019)

    Article  Google Scholar 

  27. Guo, H., Zhang, J., Liu, J.: FiWi-enhanced vehicular edge computing networks. IEEE Veh. Technol. Mag. 14, 45–53 (2019)

    Article  Google Scholar 

  28. Liu, H., Zhang, Y., Yang, T.: Blockchain-enabled security in electric vehicles cloud and edge computing. IEEE Netw. 32(3), 78–83 (2018)

    Article  Google Scholar 

  29. Wang, F., Jiang, D., Qi, S.: An adaptive routing algorithm for integrated information networks. China Commun. 7(1), 196–207 (2019)

    Google Scholar 

  30. Wang, J., He, B., Wang, J., et al.: Intelligent VNFs selection based on traffic identification in vehicular cloud networks. IEEE Trans. Veh. Technol. 68(5), 4140–4147 (2019)

    Article  Google Scholar 

  31. Huo, L., Jiang, D., Qi, S., et al.: An AI-based adaptive cognitive modeling and measurement method of network traffic for EIS. Mob. Netw. Appl. (2019). https://doi.org/10.1007/s11036-019-01419-z

    Article  Google Scholar 

  32. Li, M., Si, P., Zhang, Y.: Delay-tolerant data traffic to software-defined vehicular networks with mobile edge computing in smart city. IEEE Trans. Veh. Technol. 67(10), 9073–9086 (2018)

    Article  Google Scholar 

  33. Garg, S., Kaur, K., Ahmed, S., et al.: MobQoS: mobility-aware and QoS-driven SDN framework for autonomous vehicles. IEEE Wirel. Commun. 26, 12–20 (2019)

    Article  Google Scholar 

  34. Huo, L., Jiang, D., Lv, Z., et al.: An intelligent optimization-based traffic information acquirement approach to software-defined networking. Comput. Intell. 36, 1–21 (2019)

    Google Scholar 

  35. Lin, C., Deng, D., Yao, C.: Resource allocation in vehicular cloud computing systems with heterogeneous vehicles and roadside units. IEEE Internet of Things J. 5(5), 3692–3700 (2018)

    Article  Google Scholar 

  36. Garg, S., Singh, A., Batra, S., et al.: UAV-empowered edge computing environment for cyber-threat detection in smart vehicles. IEEE Netw. 32, 42–51 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanbo Meng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meng, F., Li, H., Lu, B., Ren, S., Wang, D. (2021). A 5G Network Slice Based Edge Access Approach with Communication Quality Assurance. In: Song, H., Jiang, D. (eds) Simulation Tools and Techniques. SIMUtools 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 369. Springer, Cham. https://doi.org/10.1007/978-3-030-72792-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72792-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72791-8

  • Online ISBN: 978-3-030-72792-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics