Skip to main content

Quality Diversity Genetic Programming for Learning Decision Tree Ensembles

  • Conference paper
  • First Online:
Genetic Programming (EuroGP 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12691))

Included in the following conference series:

Abstract

Quality Diversity (QD) algorithms are a class of population-based evolutionary algorithms designed to generate sets of solutions that are both fit and diverse. In this paper, we describe a strategy for applying QD concepts to the generation of decision tree ensembles by optimizing collections of trees for both individually accurate and collectively diverse predictive behavior. We compare three variants of this QD strategy with two existing ensemble generation strategies over several classification data sets. We then briefly highlight the effect of the evolutionary algorithm at the core of the strategy. The examined algorithms generate ensembles with distinct predictive behaviors as measured by classification accuracy and intrinsic diversity. The plotted behaviors hint at highly data-dependent relationships between these metrics. QD-based strategies are suggested as a means to optimize classifier ensembles along this performance curve along with other suggestions for future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandar, Z., Al-Attar, H., McLean, D.: Genetic algorithm based multiple decision tree induction. In: Proceedings of the 6th International Conference on Neural Information Processing (ICONIP), vol. 2, pp. 429–434 (1999)

    Google Scholar 

  2. Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: A new ensemble diversity measure applied to thinning ensembles. In: Windeatt, T., Roli, F. (eds.) MCS 2003. LNCS, vol. 2709, pp. 306–316. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44938-8_31

    Chapter  Google Scholar 

  3. Banfield, R.E., Hall, L.O., Bowyer, K.W., Kegelmeyer, W.P.: A comparison of decision tree ensemble creation techniques. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 173–180 (2006)

    Article  Google Scholar 

  4. Barros, R.C., Basgalupp, M.P., De Carvalho, A.C., Freitas, A.A.: A survey of evolutionary algorithms for decision-tree induction. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(3), 291–312 (2011)

    Article  Google Scholar 

  5. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). https://doi.org/10.1007/BF00058655

    Article  MATH  Google Scholar 

  6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  7. Brodley, C.E.: Recursive automatic bias selection for classifier construction. Mach. Learn. 20(1–2), 63–94 (1995). https://doi.org/10.1023/A:1022686102325

    Article  Google Scholar 

  8. Burke, E.K., Gustafson, S., Kendall, G.: Diversity in genetic programming: an analysis of measures and correlation with fitness. IEEE Trans. Evol. Comput. 8(1), 47–62 (2004)

    Article  Google Scholar 

  9. Chan, P.K., Stolfo, S.J.: On the accuracy of meta-learning for scalable data mining. J. Intell. Inf. Syst. 8(1), 5–28 (1997). https://doi.org/10.1023/A:1008640732416

    Article  Google Scholar 

  10. Cully, A., Demiris, Y.: Quality and diversity optimization: a unifying modular framework. IEEE Trans. Evol. Comput. 22(2), 245–259 (2017)

    Article  Google Scholar 

  11. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 40(2), 139–157 (2000). https://doi.org/10.1023/A:1007607513941

    Article  Google Scholar 

  12. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  13. Fan, W., Wang, H., Yu, P.S., Ma, S.: Is random model better? On its accuracy and efficiency. In: Third International Conference on Data Mining, pp. 51–58. IEEE (2003)

    Google Scholar 

  14. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. In: Advances in Neural Information Processing Systems, pp. 231–238 (1995)

    Google Scholar 

  15. Kuncheva, L.I., Whitaker, C.J., Shipp, C.A., Duin, R.P.: Is independence good for combining classifiers? In: International Conference on Pattern Recognition, vol. 2, pp. 168–171. IEEE (2000)

    Google Scholar 

  16. Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty search and local competition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 211–218. ACM (2011)

    Google Scholar 

  17. Liu, F.T., Ting, K.M., Fan, W.: Maximizing tree diversity by building complete-random decision trees. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 605–610. Springer, Heidelberg (2005). https://doi.org/10.1007/11430919_70

    Chapter  Google Scholar 

  18. Merz, C.J.: Dynamical selection of learning algorithms. In: Fisher, D., Lenz, H.J. (eds.) Learning from Data. LNS, vol. 112, pp. 281–290. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-2404-4_27

    Chapter  Google Scholar 

  19. Mouret, J.B., Clune, J.: Illuminating search spaces by mapping elites. arXiv preprint arXiv:1504.04909 (2015)

  20. Pugh, J.K., Soros, L.B., Stanley, K.O.: Quality diversity: a new frontier for evolutionary computation. Front. Robot. AI 3, 40 (2016)

    Article  Google Scholar 

  21. Raileanu, L.E., Stoffel, K.: Theoretical comparison between the Gini index and information gain criteria. Ann. Math. Artif. Intell. 41(1), 77–93 (2004). https://doi.org/10.1023/B:AMAI.0000018580.96245.c6

    Article  MathSciNet  MATH  Google Scholar 

  22. Tanigawa, T., Zhao, Q.: A study on efficient generation of decision trees using genetic programming. In: Proceedings of the 2nd Annual Conference on Genetic and Evolutionary Computation (GECCO), pp. 1047–1052. ACM (2000)

    Google Scholar 

  23. Van Erp, M., Vuurpijl, L., Schomaker, L.: An overview and comparison of voting methods for pattern recognition. In: Proceedings of the Eighth International Workshop on Frontiers in Handwriting Recognition, pp. 195–200. IEEE (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephen Boisvert or John W. Sheppard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boisvert, S., Sheppard, J.W. (2021). Quality Diversity Genetic Programming for Learning Decision Tree Ensembles. In: Hu, T., Lourenço, N., Medvet, E. (eds) Genetic Programming. EuroGP 2021. Lecture Notes in Computer Science(), vol 12691. Springer, Cham. https://doi.org/10.1007/978-3-030-72812-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72812-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72811-3

  • Online ISBN: 978-3-030-72812-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics