Skip to main content

On Hybrid Heuristics for Steiner Trees on the Plane with Obstacles

  • Conference paper
  • First Online:
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2021)

Abstract

Minimal-length Steiner trees in the two-dimensional Euclidean domain are of special interest to enable the efficient coordination of multi-agent and interconnected systems. We propose an approach to compute obstacle-avoiding Steiner trees by using the hybrid between hierarchical optimization of shortest routes through sequential quadratic programming over constrained two-dimensional convex domains, and the gradient-free stochastic optimization algorithms with a convex search space. Our computational experiments involving 3,000 minimal tree planning scenarios in maps with convex and non-convex obstacles show the feasibility and the efficiency of our approach. Also, our comparative study involving relevant classes of gradient-free and nature inspired heuristics has shed light on the robustness of the selective pressure and exploitation abilities of the Dividing Rectangles (DIRECT), the Rank-based Differential Evolution (RBDE) and the Differential Evolution with Successful Parent Selection (DESPS). Our approach offers the cornerstone mechanisms to further advance towards developing efficient network optimization algorithms with flexible and scalable representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51, 401–420 (2006)

    Article  MathSciNet  Google Scholar 

  2. Li, A., Wang, L., Pierpaoli, P., Egerstedt, M.: Formally correct composition of coordinated behaviors using control barrier certificates. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3723–3729 (2018)

    Google Scholar 

  3. Luo, W., Khatib, S.S., Nagavalli, S., Chakraborty, N., Sycara, K.: Distributed knowledge leader selection for multi-robot environmental sampling under bandwidth constraints. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5751–5757 (2016)

    Google Scholar 

  4. de Fermat, P.: Method for determining maxima and minima and tangents to curved lines. Oeuvres 1, 135 (1643)

    Google Scholar 

  5. Vojtěch, J., Kössler, M.: On minimal graphs containing n given points. Časopis pro pěstování matematiky a fysiky 63, 223–235 (1934). (in Czech). Zbl 0009.13106

    Google Scholar 

  6. Robbins, H., Courant, R.: What is Mathematics? Oxford University Press, New York (1941)

    Google Scholar 

  7. Winter, P., MacGregor Smith, J.: Steiner minimal trees for three points with one convex polygonal obstacle. Ann. Oper. Res. 33, 577–599 (1991). https://doi.org/10.1007/BF02067243

    Article  MathSciNet  MATH  Google Scholar 

  8. Winter, P.: Euclidean Steiner minimal trees with obstacles and Steiner visibility graphs. Discret. Appl. Math. 47, 187–206 (1993)

    Article  MathSciNet  Google Scholar 

  9. Zachariasen, M., Winter, P.: Obstacle-avoiding Euclidean Steiner trees in the plane: an exact algorithm. In: Goodrich, M.T., McGeoch, C.C. (eds.) ALENEX 1999. LNCS, vol. 1619, pp. 286–299. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48518-X_17

    Chapter  Google Scholar 

  10. Weng, J.F., MacGregor Smith, J.: Steiner minimal trees with one polygonal obstacle. Algorithmica 29, 638–648 (2001). https://doi.org/10.1007/s00453-001-0002-1

    Article  MathSciNet  MATH  Google Scholar 

  11. Winter, P., Zachariasen, M., Nielsen, J.: Short trees in polygons. Discret. Appl. Math. 118, 55–72 (2002)

    Article  MathSciNet  Google Scholar 

  12. Müller-Hannemann, M., Tazari, S.: A near linear time approximation scheme for Steiner tree among obstacles in the plane. Comput. Geom. Theory Appl. 43, 395–409 (2010)

    Article  MathSciNet  Google Scholar 

  13. Borradaile, G., Kenyon-Mathieu, C., Klein, P.: A polynomial-time approximation scheme for Steiner tree in planar graphs. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1285–1294 (2007)

    Google Scholar 

  14. Cohen, N., Nutov, Z.: Approximating Steiner trees and forests with minimum number of Steiner points. J. Comput. Syst. Sci. 98, 53–64 (2018)

    Article  MathSciNet  Google Scholar 

  15. Chen, B., Chen, H., Wu, C.: Obstacle-avoiding connectivity restoration based on quadrilateral Steiner tree in disjoint wireless sensor networks. IEEE Access 7, 124116–124127 (2019)

    Article  Google Scholar 

  16. Caleffi, M., Akyildiz, I.F., Paura, L.: On the solution of the Steiner tree np-hard problem via Physarum bionetwork. IEEE/ACM Trans. Network. 23, 1092–1106 (2015)

    Article  Google Scholar 

  17. Sun, Y., Halgamuge, S.: Fast algorithms inspired by Physarum polycephalum for node weighted Steiner tree problem with multiple terminals. In: IEEE Congress on Evolutionary Computation, pp. 3254–3260 (2016)

    Google Scholar 

  18. Camacho-Vallejo, J.F., Garcia-Reyes, C.: Co-evolutionary algorithms to solve hierarchized Steiner tree problems in telecommunication networks. Appl. Soft Comput. 84, 105718 (2019)

    Article  Google Scholar 

  19. Parque, V., Miyashita, T.: Obstacle-avoiding Euclidean Steiner trees by n-star bundles. In: IEEE 30th International Conference on Tools with Artificial Intelligence, pp. 315–319 (2018)

    Google Scholar 

  20. Chuong, T.V., Nam, H.H.: A variable neighborhood search algorithm for solving the Steiner minimal tree problem. In: Cong Vinh, P., Alagar, V. (eds.) ICCASA/ICTCC -2018. LNICST, vol. 266, pp. 218–225. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-06152-4_19

    Chapter  Google Scholar 

  21. Lai, X., Zhou, Y., Xia, X., Zhang, Q.: Performance analysis of evolutionary algorithms for Steiner tree problems. Evol. Comput. 25, 707–723 (2017)

    Article  Google Scholar 

  22. Chen, X., Liu, G., Xiong, N., Su, Y., Chen, G.: A survey of swarm intelligence techniques in VLSI routing problems. IEEE Access 8, 26266–26292 (2020)

    Article  Google Scholar 

  23. Tan, W.C., Chen, I., Pantazis, D., Pan, S.J.: Transfer learning with PipNet: for automated visual analysis of piping design. In: 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), pp. 1296–1301 (2018)

    Google Scholar 

  24. Liu, Q., Wang, C.: Multi-terminal pipe routing by Steiner minimal tree and particle swarm optimisation. Enterp. Inf. Syst. 6, 315–327 (2012)

    Article  Google Scholar 

  25. Liu, G., Guo, W., Niu, Y., Chen, G., Huang, X.: A PSO-based timing-driven octilinear Steiner tree algorithm for VLSI routing considering bend reduction. Soft. Comput. 19, 1153–1169 (2015)

    Article  Google Scholar 

  26. Huang, X., Liu, G., Guo, W., Niu, Y., Chen, G.: Obstacle-avoiding algorithm in X-architecture based on discrete particle swarm optimization for VLSI design. ACM Trans. Des. Autom. Electron. Syst. 20, 1–28 (2015)

    Article  Google Scholar 

  27. Sui, H., Niu, W.: Branch-pipe-routing approach for ships using improved genetic algorithm. Front. Mech. Eng. 11, 316–323 (2016). https://doi.org/10.1007/s11465-016-0384-z

    Article  Google Scholar 

  28. Niu, W., Sui, H., Niu, Y., Cai, K., Gao, W.: Ship pipe routing design using NSGA-II and coevolutionary algorithm. Math. Probl. Eng. 2016, 1–21 (2016)

    Article  Google Scholar 

  29. Liu, L., Liu, Q.: Multi-objective routing of multi-terminal rectilinear pipe in 3D space by MOEA/D and RSMT. In: 2018 3rd International Conference on Advanced Robotics and Mechatronics (ICARM), pp. 462–467 (2018)

    Google Scholar 

  30. Jiang, W.Y., Lin, Y., Chen, M., Yu, Y.Y.: A co-evolutionary improved multi-ant colony optimization for ship multiple and branch pipe route design. Ocean Eng. 102, 63–70 (2015)

    Article  Google Scholar 

  31. Ztopuoianu, A.C., et al.: Multi-objective optimal design of obstacle-avoiding two-dimensional Steiner trees with application to ascent assembly engineering. J. Mech. Des. 140, 061401-1–061401-11 (2018)

    Google Scholar 

  32. Wu, H., Xu, S., Zhuang, Z., Liu, G.: X-architecture Steiner minimal tree construction based on discrete differential evolution. In: Liu, Y., Wang, L., Zhao, L., Yu, Z. (eds.) ICNC-FSKD 2019. AISC, vol. 1074, pp. 433–442. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-32456-8_47

    Chapter  Google Scholar 

  33. Byrd, R., Gilbert, J., Nocedal, J.: A trust region method based on interior point techniques for nonlinear programming. Math. Program. 89(1), 149–185 (2000). https://doi.org/10.1007/PL00011391

    Article  MathSciNet  MATH  Google Scholar 

  34. Parque, V., Miyashita, T.: Bundling n-Stars in polygonal maps. In: 29th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2017, Boston, MA, USA, 6–8 November 2017, pp. 358–365 (2017)

    Google Scholar 

  35. Zăvoianu, A.-C., et al.: On the optimization of 2D path network layouts in engineering designs via evolutionary computation techniques. In: Andrés-Pérez, E., González, L.M., Periaux, J., Gauger, N., Quagliarella, D., Giannakoglou, K. (eds.) Evolutionary and Deterministic Methods for Design Optimization and Control With Applications to Industrial and Societal Problems. CMAS, vol. 49, pp. 307–322. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-89890-2_20

    Chapter  Google Scholar 

  36. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359 (1997). https://doi.org/10.1023/A:1008202821328

    Article  MathSciNet  MATH  Google Scholar 

  37. Das, S., Abraham, A., Chakraborty, U.K., Konar, A.: Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 13, 526–553 (2009)

    Article  Google Scholar 

  38. Sutton, A.M., Lunacek, M., Whitley, L.D.: Differential evolution and non-separability: using selective pressure to focus search. In: The Genetic and Evolutionary Computation Conference (GECCO), pp. 1428–1435 (2007)

    Google Scholar 

  39. Guo, S., Yang, C., Hsu, P., Tsai, J.: Improving differential evolution with a successful-parent-selecting framework. IEEE Trans. Evol. Comput. 19(5), 717–730 (2015)

    Article  Google Scholar 

  40. Qu, B., Liang, J., Suganthan, P.: Niching particle swarm optimization with local search for multi-modal optimization. Inf. Sci. 197, 131–143 (2012)

    Article  Google Scholar 

  41. Jones, D.R.: Direct global optimization algorithm. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, pp. 431–440. Springer, Boston (2001). https://doi.org/10.1007/0-306-48332-7_93

    Chapter  Google Scholar 

  42. Parque, V., Miura, S., Miyashita, T.: Computing path bundles in bipartite networks. In: Proceedings of the 7th International Conference on Simulation and Modeling Methodologies, Technologies and Applications, pp. 422–427 (2017)

    Google Scholar 

  43. Parque, V., Miyashita, T.: Numerical representation of modular graphs. In: IEEE 42nd Annual Computer Software and Applications Conference, pp. 819–820 (2018)

    Google Scholar 

  44. Parque, V., Miyashita, T.: On the numerical representation of labeled graphs with self-loops. In: 29th IEEE International Conference on Tools with Artificial Intelligence, pp. 342–349 (2017)

    Google Scholar 

  45. Parque, V., Miyashita, T.: On succinct representation of directed graphs. In: IEEE International Conference on Big Data and Smart Computing, pp. 199–205 (2017)

    Google Scholar 

  46. Parque, V., Miyashita, T.: On graph representation with smallest numerical encoding. In: IEEE 42nd Annual Computer Software and Applications Conference, pp. 817–818 (2018)

    Google Scholar 

  47. Parque, V., Suzaki, W., Miura, S., Torisaka, A., Miyashita, T., Natori, M.: Packaging of thick membranes using a multi-spiral folding approach: flat and curved surfaces. Adv. Space Res. (2020, in press). https://doi.org/10.1016/j.asr.2020.09.040

Download references

Acknowledgment

This research was supported by JSPS KAKENHI Grant Number 20K11998.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Parque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parque, V. (2021). On Hybrid Heuristics for Steiner Trees on the Plane with Obstacles. In: Zarges, C., Verel, S. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2021. Lecture Notes in Computer Science(), vol 12692. Springer, Cham. https://doi.org/10.1007/978-3-030-72904-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72904-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72903-5

  • Online ISBN: 978-3-030-72904-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics