Skip to main content

A Metric Learning Approach to Graph Edit Costs for Regression

  • Conference paper
  • First Online:
Structural, Syntactic, and Statistical Pattern Recognition (S+SSPR 2021)

Abstract

Graph edit distance (GED) is a widely used dissimilarity measure between graphs. It is a natural metric for comparing graphs and respects the nature of the underlying space, and provides interpretability for operations on graphs. As a key ingredient of the GED, the choice of edit cost functions has a dramatic effect on the GED and therefore the classification or regression performances. In this paper, in the spirit of metric learning, we propose a strategy to optimize edit costs according to a particular prediction task, which avoids the use of predefined costs. An alternate iterative procedure is proposed to preserve the distances in both the underlying spaces, where the update on edit costs obtained by solving a constrained linear problem and a re-computation of the optimal edit paths according to the newly computed costs are performed alternately. Experiments show that regression using the optimized costs yields better performances compared to random or expert costs.

This research was supported by CSC (China Scholarship Council), the French national research agency (ANR) under the grant APi (ANR-18-CE23-0014), the ANR “Investissements d’avenir” program ANR-19-P3IA-0001 (PRAIRIE 3IA Institute) and grant ESIGMA ANR-17-CE23-0010.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note the GED will be null when comparing two isomorphic graphs.

  2. 2.

    Code available at https://gitlab.insa-rouen.fr/bgauzere/fit-distances.

References

  1. Abu-Aisheh, Z., et al.: Graph edit distance contest: results and future challenges. Pattern Recogn. Lett. 100, 96–103 (2017)

    Article  Google Scholar 

  2. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992)

    MathSciNet  Google Scholar 

  3. Balcilar, M., Renton, G., Héroux, P., Gaüzère, B., Adam, S., Honeine, P.: When spectral domain meets spatial domain in graph neural networks. In: Proceedings of ICML 2020 - Workshop on Graph Representation Learning and Beyond (GRL+ 2020), Vienna, Austria, 12–18 July 2020

    Google Scholar 

  4. Bellet, A., Habrard, A., Sebban, M.: Good edit similarity learning by loss minimization. Mach. Learn. 89(1–2), 5–35 (2012)

    Article  MathSciNet  Google Scholar 

  5. Bellet, A., Habrard, A., Sebban, M.: A survey on metric learning for feature vectors and structured data. arXiv preprint arXiv:1306.6709 (2013)

  6. Blumenthal, D.B., Boria, N., Gamper, J., Bougleux, S., Brun, L.: Comparing heuristics for graph edit distance computation. VLDB J. 29(1), 419–458 (2020)

    Article  Google Scholar 

  7. Bougleux, S., Brun, L., Carletti, V., Foggia, P., Gaüzère, B., Vento, M.: Graph edit distance as a quadratic assignment problem. Pattern Recogn. Lett. 87, 38–46 (2015)

    Google Scholar 

  8. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE Signal Process. Mag. 34(4), 18–42 (2017)

    Article  Google Scholar 

  9. Bunke, H.: Error correcting graph matching: on the influence of the underlying cost function. IEEE Trans. Pattern Anal. Mach. Intell. 21(9), 917–922 (1999). https://doi.org/10.1109/34.790431

    Article  Google Scholar 

  10. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recogn. Lett. 1(4), 245–253 (1983)

    Article  Google Scholar 

  11. Cherqaoui, D., Villemin, D.: Use of a neural network to determine the boiling point of alkanes. J. Chem. Soc. Faraday Trans. 90, 97–102 (1994)

    Article  Google Scholar 

  12. Cherqaoui, D., Villemin, D., Mesbah, A., Cense, J.M., Kvasnicka, V.: Use of a neural network to determine the normal boiling points of acyclic ethers, peroxides, acetals and their sulfur analogues. J. Chem. Soc. Faraday Trans. 90, 2015–2019 (1994)

    Article  Google Scholar 

  13. Cortés, X., Conte, D., Cardot, H.: Learning edit cost estimation models for graph edit distance. Pattern Recogn. Lett. 125, 256–263 (2019). https://doi.org/10.1016/j.patrec.2019.05.001

    Article  Google Scholar 

  14. Cortés, X., Serratosa, F.: Learning graph-matching edit-costs based on the optimality of the oracle’s node correspondences. Pattern Recogn. Lett. 56, 22–29 (2015)

    Article  Google Scholar 

  15. Cristianini, N., Shawe-Taylor, J., Elisseeff, A., Kandola, J.: On kernel-target alignment. In: Advances in Neural Information Processing Systems, pp. 367–373 (2002)

    Google Scholar 

  16. Diamond, S., Boyd, S.: CVXPY: a python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 17(1), 2909–2913 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Gibert, J., Valveny, E., Bunke, H.: Graph embedding in vector spaces by node attribute statistics. Pattern Recogn. 45(9), 3072–3083 (2012)

    Article  Google Scholar 

  18. Honeine, P., Richard, C.: Preimage problem in kernel-based machine learning. IEEE Signal Process. Mag. 28(2), 77–88 (2011)

    Article  Google Scholar 

  19. Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. SIAM, Philadelphia (1995)

    Google Scholar 

  20. Neuhaus, M., Bunke, H.: A probabilistic approach to learning costs for graph edit distance. Proc. ICPR 3(C), 389–393 (2004)

    Google Scholar 

  21. Neuhaus, M., Bunke, H.: Self-organizing maps for learning the edit costs in graph matching. IEEE Trans. Syst. Man Cybern. 35(3), 503–514 (2005)

    Google Scholar 

  22. Neuhaus, M., Bunke, H.: Automatic learning of cost functions for graph edit distance. Inf. Sci. 177(1), 239–247 (2007). https://doi.org/10.1016/j.ins.2006.02.013

    Article  MathSciNet  MATH  Google Scholar 

  23. Ontañón, S.: An overview of distance and similarity functions for structured data. Artif. Intell. Rev. (2020). https://doi.org/10.1007/s10462-020-09821-w

    Article  Google Scholar 

  24. Riesen, K.: Structural Pattern Recognition with Graph Edit Distance. ACVPR. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27252-8

    Book  MATH  Google Scholar 

  25. Riesen, K., Bunke, H.: IAM graph database repository for graph based pattern recognition and machine learning. In: da Vitoria Lobo, N., et al. (eds.) SSPR /SPR 2008. LNCS, vol. 5342, pp. 287–297. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89689-0_33

    Chapter  Google Scholar 

  26. Ristad, E.S., N.yianilos, P.: Learning string-edit distance. IEEE Trans. Pattern Anal. Mach. Intell. 20(5), 522–532 (1998). https://doi.org/10.1109/34.682181

  27. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Systems, Man Cybern. 13(3), 353–362 (1983)

    Google Scholar 

  28. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 12(9) (2011)

    Google Scholar 

  29. Virtanen, P., et al.: Scipy 1.0: fundamental algorithms for scientific computing in python. Nat. Method 17(3), 261–272 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linlin Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, L., Gaüzère, B., Yger, F., Honeine, P. (2021). A Metric Learning Approach to Graph Edit Costs for Regression. In: Torsello, A., Rossi, L., Pelillo, M., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2021. Lecture Notes in Computer Science(), vol 12644. Springer, Cham. https://doi.org/10.1007/978-3-030-73973-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-73973-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-73972-0

  • Online ISBN: 978-3-030-73973-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics