Skip to main content

Isogeny-Based Key Compression Without Pairings

  • Conference paper
  • First Online:
Public-Key Cryptography – PKC 2021 (PKC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12710))

Included in the following conference series:

Abstract

SIDH/SIKE-style protocols benefit from key compression to minimize their bandwidth requirements, but proposed key compression mechanisms rely on computing bilinear pairings. Pairing computation is a notoriously expensive operation, and, unsurprisingly, it is typically one of the main efficiency bottlenecks in SIDH key compression, incurring processing time penalties that are only mitigated at the cost of trade-offs with precomputed tables. We address this issue by describing how to compress isogeny-based keys without pairings. As a bonus, we also substantially reduce the storage requirements of other operations involved in key compression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The actual SIKE setting matches this convention.

  2. 2.

    For the binary torsion, our methods require an extra table, \(\mathsf {L}_6\) or \(\mathsf {L}_6^*\), containing just 9 points over \(\mathbb {F}_{p^2}\), a small fraction of the space required for the other tables.

References

  1. Azarderakhsh, R., et al.: Supersingular Isogeny Key Encapsulation. SIKE Team (2020). https://sike.org/

  2. Azarderakhsh, R., Jao, D., Kalach, K., Koziel, B., Leonardi, C.: Key compression for isogeny-based cryptosystems. In: Proceedings of the 3rd ACM International Workshop on ASIA Public-Key Cryptography, pp. 1–10. ACM (2016)

    Google Scholar 

  3. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards Curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–405. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9_26

    Chapter  Google Scholar 

  4. Chuengsatiansup, C.: Optimizing curve-based cryptography. PhD thesis, Technische Universiteit Eindhoven (2017)

    Google Scholar 

  5. Costello, C., Jao, D., Longa, P., Naehrig, M., Renes, J., Urbanik, D.: Efficient Compression of SIDH Public Keys. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 679–706. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_24

    Chapter  Google Scholar 

  6. Costello, C., Longa, P., Naehrig, M.: Efficient Algorithms for Supersingular Isogeny Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_21

    Chapter  Google Scholar 

  7. De Feo, L., Jao, D., Plût, J.: Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. J. Math. Crypto. 8(3), 209–247 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Galbraith, S.D., Rotger, V.: Easy decision-Diffie-Hellman groups. LMS J. Comput. Math. 7, 201–218 (2004)

    Article  MathSciNet  Google Scholar 

  9. Hutchinson, A., Karabina, K., Pereira, G.: Memory Optimization Techniques for Computing Discrete Logarithms in Compressed SIKE. Cryptology ePrint Archive, Report 2021/368 (2020). http://eprint.iacr.org/2021/368

  10. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton, USA (1999)

    MATH  Google Scholar 

  11. Naehrig, M., Renes, J.: Dual Isogenies and Their Application to Public-Key Compression for Isogeny-Based Cryptography. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 243–272. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_9

    Chapter  Google Scholar 

  12. Pereira, G., Doliskani, J., Jao, D.: x-only point addition formula and faster compressed SIKE. J. Cryptographic Eng. 11(1), 1–13, (2020)

    Google Scholar 

  13. Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over \(GF(p)\) and its cryptographic significance. IEEE Trans. Inf. Theory 24(1), 106–110 (1978)

    Article  MathSciNet  Google Scholar 

  14. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  15. Sutherland, A.V.: Structure computation and discrete logarithms in finite Abelian \(p\)-groups. Math. Comput. 80, 477–500 (2011)

    Article  MathSciNet  Google Scholar 

  16. Teske, E.: The Pohlig-Hellman method generalized for group structure computation. J. Symbolic Comput. 27(6), 521–534 (1999)

    Article  MathSciNet  Google Scholar 

  17. Zanon, G.H.M., Simplicio, M.A., Pereira, G.C.C.F., Doliskani, J., Barreto, P.S.L.M.: Faster Isogeny-Based Compressed Key Agreement. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 248–268. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_12

    Chapter  Google Scholar 

  18. Zanon, G.H.M., Simplicio Jr., M.A., Pereira, G.C.C.F., Doliskani, J., Barreto, P.S.L.M.: Faster key compression for isogeny-based cryptosystems. IEEE Trans. Comput. 68(5), 688–701 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported in part by NSERC, CryptoWorks21, Canada First Research Excellence Fund, Public Works and Government Services Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geovandro C. C. F. Pereira .

Editor information

Editors and Affiliations

A The OptPath algorithm

A The OptPath algorithm

figure l

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pereira, G.C.C.F., Barreto, P.S.L.M. (2021). Isogeny-Based Key Compression Without Pairings. In: Garay, J.A. (eds) Public-Key Cryptography – PKC 2021. PKC 2021. Lecture Notes in Computer Science(), vol 12710. Springer, Cham. https://doi.org/10.1007/978-3-030-75245-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-75245-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-75244-6

  • Online ISBN: 978-3-030-75245-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics