Skip to main content

Mean Square Convergence of Reproducing Kernel for Channel Identification: Application to Bran D Channel Impulse Response

  • Conference paper
  • First Online:
Business Intelligence (CBI 2021)

Abstract

Nowadays, in the field of nonlinear system identification, the function approximation builds on the theory of reproducing kernel Hilbert spaces (RKHS) is of high importance in kernel-based regression methods. In this paper, we are focused on the finite impulse response identification problem for single-input single-output (SISO) nonlinear systems, whose outputs are detected by binary value sensors. In the one hand, we have used kernel adaptive filtering methods, such as, kernel least mean square (KLMS) and kernel normalized least mean square (KNLMS) to identify the practical frequency selective fading channel called Broadband Radio Access Network (BRAN). In the other hand, the mean square convergence is also investigated to indicate the robustness of the kernel normalized LMS algorithm. Monte Carlo simulation results in noisy environment and for various data length, shows that the kernel-normalized LMS algorithm can provide superior accuracy as opposed to the kernel-based LMS algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saitoh, S.: Theory of reproducing kernels and its applications. Longman Scientific and Technical (1988)

    Google Scholar 

  2. Muller, K.R., Mika, S., Ratsch, G., Tsuda, K., Scholkopf, B.: An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12(2), 181–201 (2001)

    Article  Google Scholar 

  3. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Article  MATH  Google Scholar 

  4. Nguyen, M.H., De la Torre, F.: Optimal feature selection for support vector machines. Pattern Recogn. 43(3), 584–591 (2010)

    Article  Google Scholar 

  5. Liu, W., Park, I., Principe, J.C.: An information theoretic approach of designing sparse kernel adaptive filters. IEEE Trans. Neural Netw. 20(12), 1950–1961 (2009)

    Article  Google Scholar 

  6. Liu, W., Pokharel, P., Principe, J.C.: The kernel least-mean-square algorithm. IEEE Trans. Signal Process. 56(2), 543–554 (2008)

    Article  MathSciNet  Google Scholar 

  7. Liu, W., Príncipe, J.C.: Kernel affine projection algorithms. EURASIP J. Adv. Signal Process. 2008(1), 1–12 (2008)

    Article  MATH  Google Scholar 

  8. Wu, Q., Li, Y., Jiang, Z., Zhang, Y.: A novel hybrid kernel adaptive filtering algorithm for nonlinear channel equalization. IEEE Access 7, 62107–62114 (2019)

    Article  Google Scholar 

  9. Van Vaerenbergh, S., Via, J., Santamaria, I.: Nonlinear system identification using a new sliding-window kernel RLS algorithm. JCM 2(3), 1–8 (2007)

    Article  Google Scholar 

  10. Zhao, J., Liao, X., Wang, S., Chi, K.T.: Kernel least mean square with single feedback. IEEE Signal Process. Lett. 22(7), 953–957 (2014)

    Article  Google Scholar 

  11. Wang, S., Zheng, Y., Ling, C.: Regularized kernel least mean square algorithm with multiple-delay feedback. IEEE Signal Process. Lett. 23(1), 98–101 (2015)

    Article  Google Scholar 

  12. Liu, W., Park, I., Wang, Y., Principe, J.C.: Extended kernel recursive least squares algorithm. IEEE Trans. Signal Process. 57(10), 3801–3814 (2009)

    Article  MathSciNet  Google Scholar 

  13. Slavakis, K., Bouboulis, P., Theodoridis, S.: Online learning in reproducing kernel Hilbert spaces. In: Academic Press Library in Signal Processing, vol. 1, pp. 883–987. Elsevier (2014)

    Google Scholar 

  14. ETSI. Broadband Radio Access Network (BRAN); HYPERLAN Type 2 Physical layer (PHY). Technical report, December 2001

    Google Scholar 

  15. ETSI. Broadband Radio Access Network (BRAN); HYPERLAN Type 2 Requirements and architectures for wireless broadband access, January 1999

    Google Scholar 

  16. Li, K., Principe, J.C.: No-trick (treat) kernel adaptive filtering using deterministic features. arXiv preprint arXiv:1912.04530 (2019)

  17. Kwong, R.H., Johnston, E.W.: A variable step size LMS algorithm. IEEE Trans. Signal Process. 40(7), 1633–1642 (1992)

    Article  Google Scholar 

  18. Saide, C., Lengelle, R., Honeine, P., Richard, C., Achkar, R.: Nonlinear adaptive filtering using kernel-based algorithms with dictionary adaptation. Int. J. Adapt. Control Signal Process. 29(11), 1391–1410 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fateh, R., Darif, A. (2021). Mean Square Convergence of Reproducing Kernel for Channel Identification: Application to Bran D Channel Impulse Response. In: Fakir, M., Baslam, M., El Ayachi, R. (eds) Business Intelligence. CBI 2021. Lecture Notes in Business Information Processing, vol 416. Springer, Cham. https://doi.org/10.1007/978-3-030-76508-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76508-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76507-1

  • Online ISBN: 978-3-030-76508-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics