Skip to main content

Injecting Background Knowledge into Embedding Models for Predictive Tasks on Knowledge Graphs

  • Conference paper
  • First Online:
The Semantic Web (ESWC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12731))

Included in the following conference series:

Abstract

Embedding models have been successfully exploited for Knowledge Graph refinement. In these models, the data graph is projected into a low-dimensional space, in which graph structural information are preserved as much as possible, enabling an efficient computation of solutions. We propose a solution for injecting available background knowledge (schema axioms) to further improve the quality of the embeddings. The method has been applied to enhance existing models to produce embeddings that can encode knowledge that is not merely observed but rather derived by reasoning on the available axioms. An experimental evaluation on link prediction and triple classification tasks proves the improvement yielded implementing the proposed method over the original ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Facilities available in the Apache Jena framework were used: https://jena.apache.org.

  2. 2.

    https://wiki.dbpedia.org/about.

  3. 3.

    https://github.com/iieir-km/ComplEx-NNE_AER/tree/master/datasets/DB100K.

  4. 4.

    https://github.com/nle-ml/mmkb/tree/master/DB15K.

  5. 5.

    https://yago-knowledge.org/.

  6. 6.

    http://rtw.ml.cmu.edu/rtw/.

  7. 7.

    http://nell-ld.telecom-st-etienne.fr/.

  8. 8.

    https://github.com/Keehl-Mihael/TransROWL-HRS.

References

  1. Abboud, R., Ceylan, İ.İ., Lukasiewicz, T., Salvatori, T.: BoxE: a box embedding model for knowledge base completion. In: Proceedings of NeurIPS 2020 (2020)

    Google Scholar 

  2. Arnaout, H., Razniewski, S., Weikum, G.: Enriching knowledge bases with interesting negative statements. In: Das, D., et al. (eds.) Proceedings of AKBC 2020 (2020). https://doi.org/10.24432/C5101K

  3. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Burges, C.J.C., et al. (eds.) Proceedings of NIPS 2013, pp. 2787–2795. Curran Associates, Inc. (2013)

    Google Scholar 

  4. Cai, H., Zheng, V.W., Chang, K.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(09), 1616–1637 (2018). https://doi.org/10.1109/TKDE.2018.2807452

    Article  Google Scholar 

  5. d’Amato, C.: Machine learning for the semantic web: lessons learnt and next research directions. Semant. Web 11(1), 195–203 (2020). https://doi.org/10.3233/SW-200388

    Article  Google Scholar 

  6. Ding, B., Wang, Q., Wang, B., Guo, L.: Improving knowledge graph embedding using simple constraints. In: Proceedings of ACL 2018, vol. 1, pp. 110–121. ACL (2018). https://doi.org/10.18653/v1/P18-1011

  7. Donadello, I., Serafini, L.: Compensating supervision incompleteness with prior knowledge in semantic image interpretation. In: Proceedings of IJCNN 2019, pp. 1–8. IEEE (2019). https://doi.org/10.1109/IJCNN.2019.8852413

  8. Dong, X.L., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: Proceedings of KDD 2014, pp. 601–610 (2014)

    Google Scholar 

  9. Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Jointly embedding knowledge graphs and logical rules. In: Proceedings of EMNLP 2016, pp. 192–202. ACL (2016). https://doi.org/10.18653/v1/D16-1019

  10. Gutiérrez-Basulto, V., Schockaert, S.: From knowledge graph embedding to ontology embedding? An analysis of the compatibility between vector space representations and rules. In: Thielscher, M., Toni, F., Wolter, F. (eds.) Proceedings of KR 2018, pp. 379–388. AAAI Press (2018)

    Google Scholar 

  11. He, S., Liu, K., Ji, G., Zhao, J.: Learning to represent knowledge graphs with gaussian embedding. In: Proceedings of CIKM 2015, pp. 623–632. ACM (2015). https://doi.org/10.1145/2806416.2806502

  12. Hogan, A., et al.: Knowledge graphs. arXiv:2003.02320 (2020)

  13. Jayathilaka, M., Mu, T., Sattler, U.: Visual-semantic embedding model informed by structured knowledge. In: Rudolph, S., Marreiros, G. (eds.) Proceedings of STAIRS 2020. CEUR, vol. 2655. CEUR-WS.org (2020). http://ceur-ws.org/Vol-2655/paper23.pdf

  14. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of ACL-IJCNLP 2015, vol. 1, pp. 687–696. ACL (2015). https://doi.org/10.3115/v1/P15-1067

  15. Ji, S., Pan, S., Cambria, E., Marttinen, P., Yu, P.S.: A survey on knowledge graphs: representation, acquisition and applications. arXiv:2002.00388 (2020)

  16. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: AAAI 2015 Proceedings, pp. 2181–2187. AAAI Press (2015)

    Google Scholar 

  17. Liu, Y., Li, H., Garcia-Duran, A., Niepert, M., Onoro-Rubio, D., Rosenblum, D.S.: MMKG: multi-modal knowledge graphs. In: Hitzler, P., et al. (eds.) ESWC 2019. LNCS, vol. 11503, pp. 459–474. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21348-0_30

    Chapter  Google Scholar 

  18. Lv, X., Hou, L., Li, J., Liu, Z.: Differentiating concepts and instances for knowledge graph embedding. In: Riloff, E., et al. (eds.) Proceedings of EMNLP 2018, pp. 1971–1979. ACL (2018). https://doi.org/10.18653/v1/D18-1222

  19. Minervini, P., Costabello, L., Muñoz, E., Nováček, V., Vandenbussche, P.-Y.: Regularizing knowledge graph embeddings via equivalence and inversion axioms. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 668–683. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_40

    Chapter  Google Scholar 

  20. Minervini, P., d’Amato, C., Fanizzi, N.: Efficient energy-based embedding models for link prediction in knowledge graphs. J. Intell. Inf. Syst. 47(1), 91–109 (2016). https://doi.org/10.1007/s10844-016-0414-7

    Article  Google Scholar 

  21. Minervini, P., Demeester, T., Rocktäschel, T., Riedel, S.: Adversarial sets for regularising neural link predictors. In: Elidan, G., et al. (eds.) UAI 2017 Proceedings. AUAI Press (2017)

    Google Scholar 

  22. Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semant. Web 8, 489–508 (2016). https://doi.org/10.3233/SW-160218

    Article  Google Scholar 

  23. Paulheim, H.: Make embeddings semantic again! In: Proceedings of the ISWC 2018 P&D-Industry-BlueSky Tracks. CEUR Workshop Proceedings (2018)

    Google Scholar 

  24. Socher, R., Chen, D., Manning, C.D., Ng, A.Y.: Reasoning with neural tensor networks for knowledge base completion. In: Proceedings of NIPS 2013, pp. 926–934 (2013)

    Google Scholar 

  25. Sun, Z., Huang, J., Hu, W., Chen, M., Guo, L., Qu, Y.: TransEdge: translating relation-contextualized embeddings for knowledge graphs. In: Ghidini, C., et al. (eds.) ISWC 2019. LNCS, vol. 11778, pp. 612–629. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30793-6_35

    Chapter  Google Scholar 

  26. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of AAAI 2014, pp. 1112–1119. AAAI Press (2014)

    Google Scholar 

  27. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. In: Proceedings of ICLR 2015 (2015)

    Google Scholar 

Download references

Acknowledgment

We would like to thank Giovanni Sansaro who formalized and developed the code for the preliminary version of TransOWL for his bachelor thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia d’Amato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

d’Amato, C., Quatraro, N.F., Fanizzi, N. (2021). Injecting Background Knowledge into Embedding Models for Predictive Tasks on Knowledge Graphs. In: Verborgh, R., et al. The Semantic Web. ESWC 2021. Lecture Notes in Computer Science(), vol 12731. Springer, Cham. https://doi.org/10.1007/978-3-030-77385-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77385-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77384-7

  • Online ISBN: 978-3-030-77385-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics