Skip to main content

A Research on Sensing Localization and Orientation of Objects in VR with Facial Vibrotactile Display

  • Conference paper
  • First Online:
Virtual, Augmented and Mixed Reality (HCII 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12770))

Included in the following conference series:

  • 3016 Accesses

Abstract

Tactile display technology has been widely proved to be effective to human-computer interaction. In multiple quantitative research methods to evaluate VR user experience (such as presence, immersion, and usability), multi-sensory factors are significant proportion. Therefore, the integration of VR-HMD and tactile display is a possible application and innovation trend of VR. The BIP (Break in Presence) phenomenon affects the user's spatial awareness when entering or leaving VR environments. We extracted orientation and localization tasks to discuss the influence of facial vibrotactile display on these tasks. Correlational researches are mainly focused on the parts of human body such as torso, limb, and head regions. We chose face region and to carry out the experiment, a VR-based wearable prototype “VibroMask” was built to implement facial vibrotactile perception. Firstly, the behavioral data of subjects' discrimination of vibrotactile information were tested to obtain the appropriate display paradigm. It was found that the discrimination accuracy of low-frequency vibration was higher with loose wearing status, and the delay offset of one-point vibration could better adapt to the orientation task. Secondly, the effect of facial vibrotactile display on objects’ localization and orientation discriminating task in VR was discussed. Finally, subjects’ feedback was collected by using open-ended questionnaire, it is found that users have a higher subjective evaluation of VR experience with facial vibrotactile display.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Slater, M., Usoh, M.: Presence in immersive virtual environments. In: IEEE Annual Virtual Reality International Symposium, pp. 90–96 (1993)

    Google Scholar 

  2. Witmer, B., Singer, M.: Measuring presence in virtual environments: a presence questionnaire. Presence: Teleoper. Virtual Environ. 7(3), 225–240 (1998). https://doi.org/10.1162/105474698565686

    Article  Google Scholar 

  3. Lessiter, J., Freeman, J., Keogh, E., Davidoff, J.: A cross-media presence questionnaire: the ITC-sense of presence inventory. Presence 10(3), 282–297 (2014)

    Article  Google Scholar 

  4. Nash, E.B., Edwards, G.W., Thompson, J.A., Barfield, W.: A review of presence and performance in virtual environments. Int. J. Hum.-Comput. Interact. 12(1), 1–41 (2000)

    Article  Google Scholar 

  5. Servotte, J., et al.: Virtual reality experience: immersion, sense of presence, and cybersickness. Clin. Simul. Nurs. 38, 35–43 (2020). https://doi.org/10.1016/j.ecns.2019.09.006

  6. Venkatesan, L., Barlow, S., Kieweg, D.: Age- and sex-related changes in vibrotactile sensitivity of hand and face in neurotypical adults. Somatosens. Motor Res. 32 (2014)

    Google Scholar 

  7. Mcdaniel, T., Krishna, S., Balasubramanian, V., Colbry, D., Panchanathan, S.: Using a haptic belt to convey non-verbal communication cues during social interactions to individuals who are blind. IEEE International Workshop on Haptic Audio-visual Environments and Games, pp. 13–18(2008)

    Google Scholar 

  8. Schwind, V., Knierim, P., Haas, N., Henze, N.: Using Presence Questionnaires in Virtual Reality (2019)

    Google Scholar 

  9. Wang, C., Huang, D.-Y., Hsu, S.-W., et al.: Masque: Exploring lateral skin stretch feedback on the face with head-mounted displays. In: Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (UIST '19). Association for Computing Machinery, pp. 439–451 (2019)

    Google Scholar 

  10. Ranasinghe, N., Jain, P., Karwita, S., Tolley, D., Do, E.: Ambiotherm: Enhancing Sense of Presence in Virtual Reality by Simulating Real-World Environmental Conditions, pp. 1731–1742 (2017)

    Google Scholar 

  11. Peiris, R.L., Peng, W., Chen, Z., Chan, L., Minamizawa, K.: ThermoVR: Exploring Integrated Thermal Haptic Feedback with Head Mounted Displays (2017)

    Google Scholar 

  12. Schubert, T., Friedmann, F., Regenbrecht, H.: The experience of presence: factor analytic insights. Presence 10(3), 266–281 (2001)

    Article  Google Scholar 

  13. Makransky, G., Lilleholt, L., Aaby, A.: Development and validation of the multimodal presence scale for virtual reality environments: a confirmatory factor analysis and item response theory approach. Comput. Hum. Behav. 72, 276–285 (2017)

    Google Scholar 

  14. Minamizawa, K., Kakehi, Y., Nakatani, M., Mihara, S., Tachi, S.: TECHTILE toolkit: a prototyping tool for designing haptic media (2012)

    Google Scholar 

  15. Ujitoko, Y., Ban, Y.: Vibrotactile signal generation from texture images or attributes using generative adversarial network (2019)

    Google Scholar 

  16. Durlach, P.J., Fowlkes, J., Metevier, C.J.: Effect of variations in sensory feedback on performance in a virtual reaching task. Presence 14(4), 450–462 (2005)

    Article  Google Scholar 

  17. Tsetserukou, D.: HaptiHug: a novel haptic display for communication of hug over a distance. In: International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, pp. 340–347 (2010)

    Google Scholar 

  18. Al-Sada, M.,, Jiang, K., Ranade, S., Piao, X., Höglund, T., Nakajima, T.: HapticSerpent: A Wearable Haptic Feedback Robot for VR. In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems (CHI EA '18). Association for Computing Machinery, Paper LBW624, pp. 1–6 (2018)

    Google Scholar 

  19. Al-, M., Jiang, K., Ranade, S., Kalkattawi, M., Nakajima, T.: HapticSnakes: multi-haptic feedback wearable robots for immersive virtual reality. Virtual Reality 24(2), 191–209 (2019). https://doi.org/10.1007/s10055-019-00404-x

  20. Kwon, C.: A study on the verification of the effect of sensory extension through cutaneous sensation on experiential learning using VR. Virtual Reality 25(1), 19–30 (2020). https://doi.org/10.1007/s10055-020-00435-9

    Article  Google Scholar 

  21. Tsukada, K., Yasumura, M.: Activebelt: Belt-type wearable tactile display for directional navigation. In: International Conference on Ubiquitous Computing. Springer, Berlin, Heidelberg (2004)

    Google Scholar 

  22. Vyas, P., Taha, F.A., Blum, J.R., Cooperstock, J.R.: HapToes: Vibrotactile Numeric Information Delivery via Tactile Toe Display. Haptics Symposium 2020 (2020).

    Google Scholar 

  23. Novich, S.D., Eagleman, D.M.: Using space and time to encode vibrotactile information: toward an estimate of the skin’s achievable throughput. Exp. Brain Res. 233(10), 2777–2788 (2015)

    Article  Google Scholar 

  24. Hollins, M., Goble, A.K.: Vibrotactile adaptation on the face. 49(1), 21–30 (1991)

    Google Scholar 

  25. Dobrzynski, M.K.: Quantifying information transfer through a head-attached vibrotactile display: principles for design and control. IEEE Trans. Biomed. Eng. 59(7), 2011–2018 (2012)

    Article  Google Scholar 

  26. Darken, R.P., Sibert, J.L.: A toolset for navigation in virtual environments. In: Proceedings of the 6th Annual ACM Symposium on User Interface Software and Technology. ACM (1993)

    Google Scholar 

  27. Borg, E., Rönnberg, J., Neovius, L.: Vibratory-coded directional analysis: evaluation of a three-microphone/four-vibrator DSP system. J. Rehabil. Res. Dev. 38 257–63 (2001)

    Google Scholar 

  28. Swapp, D., Pawar, V., Loscos, C.: Interaction with co-located haptic feedback in virtual reality. Virtual Reality 10, 24–30(2006)

    Google Scholar 

  29. Nukarinen, T., Rantala, J., Farooq, A., Raisamo, R.: Delivering Directional Haptic Cues through Eyeglasses and a Seat (2015)

    Google Scholar 

  30. Oliveira, V.A., Brayda, L., Nedel, L., Maciel, A.: Designing a Vibrotactile Head-Mounted Display for Spatial Awareness in 3D Spaces. IEEE Trans. Vis. Comput. Graph. 1 (2017)

    Google Scholar 

  31. Kaul, O.B., Rohs, M.: HapticHead: 3D Guidance and Target Acquisition through a Vibrotactile Grid. Chi Conference Extended Abstracts. ACM (2016)

    Google Scholar 

  32. Oliveira, V.A.D.J., Nedel, L., Maciel, A., Brayda, L.: Spatial discrimination of vibrotactile stimuli around the head. IEEE Haptics Symposium. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Chen Hsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, K. et al. (2021). A Research on Sensing Localization and Orientation of Objects in VR with Facial Vibrotactile Display. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality. HCII 2021. Lecture Notes in Computer Science(), vol 12770. Springer, Cham. https://doi.org/10.1007/978-3-030-77599-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77599-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77598-8

  • Online ISBN: 978-3-030-77599-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics