Skip to main content

Challenges Associated with Sensors and Data Fusion for AGV-Driven Smart Manufacturing

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

Data fusion methods enable the precision of measurements based on information from individual systems as well as many different subsystems to be increased. Besides, the data obtained in this way enables additional conclusions drawn from their work, e.g., detecting degradation of the work of subsystems. The article focuses on the possibilities of using data fusion to create Autonomous Guided Vehicles solutions in increasing precise positioning, navigation, and cooperation with the production environment, including docking. For this purpose, it was proposed that information from other manufacturing subsystems be used. This paper aims to review the current implementation possibilities and to identify the relationship between various research sub-areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, S., Wan, J., Li, D., Zhang, C.: Implementing smart factory of Industrie 4.0: an outlook. Int. J. Distrib. Sens. Netw. 12(1), 3159805 (2016)

    Google Scholar 

  2. European Commission. A Manufacturing Industry Vision 2025, European Commission (Joint Research Centre) Foresight study (2013)

    Google Scholar 

  3. Shafiq, S.I., Sanin, C., Szczerbicki, E., Toro, C.: Virtual engineering object/ virtual engineering process: a specialized form of cyber physical system for Industrie 4.0. Procedia Comput. Sci. 60, 1146–1155 (2015)

    Article  Google Scholar 

  4. Botta, A., de Donato, W., Persico, V., Pescapé, A.: Integration of cloud computing and internet of things: a survey. Future Gener. Comput. Syst. 56, 684–700 (2016)

    Article  Google Scholar 

  5. Shi, D., Mi, H., Collins, E.G., Wu, J.: An indoor low-cost and high-accuracy localization approach for AGVs. IEEE Access 8, 50085–50090 (2020)

    Article  Google Scholar 

  6. Realyvásquez-Vargas, A., et al.: Introduction and configuration of a collaborative robot in an assembly task as a means to decrease occupational risks and increase efficiency in a manufacturing company. Robot. Comput.-Integr. Manuf. 57, 315–328 (2019)

    Article  Google Scholar 

  7. Kuc, M., Sułek, W., Kania, D.: FPGA-oriented LDPC decoder for cyber-physical systems. Mathematics 8, 723 (2020)

    Article  Google Scholar 

  8. Mrozek, D., Tokarz, K., Pankowski, D., Małysiak-Mrozek, B.: A hopping umbrella for fuzzy joining data streams from IoT devices in the cloud and on the edge. IEEE Trans. Fuzzy Syst. 28, 916–928 (2019)

    Article  Google Scholar 

  9. Ji, Z., Ganchev, I., O’Droma, M., Zhao, L., Zhang, X.: A cloud-based car parking middleware for IoT-based smart cities: design and implementation. Sensors 14, 22372–22393 (2014)

    Article  Google Scholar 

  10. Opara, A., Kubica, M., Kania, D.: Methods of improving time efficiency of decomposition dedicated at FPGA structures and using BDD in the process of cyber-physical synthesis. IEEE Access 7, 20619–20631 (2019)

    Article  Google Scholar 

  11. Grzechca, D., et al.: How accurate can UWB and dead reckoning positioning systems be? comparison to SLAM using the RPLidar system. Sensors 20, 3761 (2020)

    Article  Google Scholar 

  12. Paszek, K., Grzechca, D., Tomczyk, M., Marciniak, A.: UWB positioning system with the support of MEMS sensors for indoor and outdoor environment. Journal of Communications, vol. 15 (2020)

    Google Scholar 

  13. Grzechca, D.E., Pelczar, P., Chruszczyk, L.: Analysis of object location accuracy for ibeacon technology based on the RSSI path loss model and fingerprint map. Int. J. Electron. Telecommun. 62(4), 371–378 (2016). https://doi.org/10.1515/eletel-2016-0051

    Article  Google Scholar 

  14. Grzechca, D., Paszek, K.: Short-term positioning accuracy based on mems sensors for smart city solutions (2019). https://doi.org/10.24425/MMS.2019.126325

  15. Roth, H., Schilling, K.: Navigation and docking manoeuvres of mobile robots in industrial environments. In: IECON 1998 Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No. 98CH36200), pp. 2458–2462. IEEE, Aachen, Germany (1998)

    Google Scholar 

  16. Thota, P., Kim, Y.: Implementation and comparison of M2M protocols for internet of things. In: 2016 International Conference ACIT-CSII-BCD, pp. 43–48. IEEE, Las Vegas, NV, USA (2016)

    Google Scholar 

  17. Hanzel, K., Paszek, K., Grzechca, D.: The influence of the data packet size on positioning parameters of UWB system for the purpose of tagging smart city infrastructure. Bulletin of the Polish Academy of Sciences. Technical Sciences, vol. 68 (2020)

    Google Scholar 

  18. Tokarz, K., Czekalski, P., Sieczkowski, W.: Integration of ultrasonic and inertial methods in indoor navigation system. Theor. Appl. Inform. 26, 107–117 (2015)

    Google Scholar 

  19. Ziebinski, A., Cupek, R., Nalepa, M.: Obstacle avoidance by a mobile platform using an ultrasound sensor. In: Nguyen, N.T., Papadopoulos, G.A., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds.) ICCCI 2017. LNCS (LNAI), vol. 10449, pp. 238–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67077-5_23

    Chapter  Google Scholar 

  20. Han, Y., Wei, C., Li, R., Wang, J., Yu, H.: A novel cooperative localization method based on IMU and UWB. Sensors 20, 467 (2020)

    Article  Google Scholar 

  21. Ziebinski, A., Bregulla, M., Fojcik, M., Kłak, S.: Monitoring and controlling speed for an autonomous mobile platform based on the hall sensor. In: Nguyen, N.T., Papadopoulos, G.A., Jędrzejowicz, P., Trawiński, B., Vossen, G. (eds.) ICCCI 2017. LNCS (LNAI), vol. 10449, pp. 249–259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67077-5_24

    Chapter  Google Scholar 

  22. Guan, H., Li, L., Jia, X.: Multisensor fusion vehicle positioning based on Kalman Filter, pp. 296–299. IEEE (2013)

    Google Scholar 

  23. Wen, S., Othman, K., Rad, A., Zhang, Y., Zhao, Y.: Indoor SLAM using laser and camera with closed-loop controller for NAO humanoid robot. Abstr. Appl. Anal. 2014, 1–8 (2014)

    Google Scholar 

  24. Fang, B.T.: Trilateration and extension to Global Positioning System navigation. J. Guid. Control Dyn. 9, 715–717 (1986)

    Article  Google Scholar 

  25. Grzechca, D., Hanzel, K., Paszek, K.: Accuracy analysis for object positioning on a circular trajectory based on the UWB location system. In: 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET), pp. 69–74. IEEE, Lviv, Ukraine (2018)

    Google Scholar 

  26. Sidek, O., Quadri, S.A.: A review of data fusion models and systems. Int. J. Image Data Fusion 3, 3–21 (2012)

    Article  Google Scholar 

  27. Liggins II, M., Hall, D., Llinas, J.: Handbook of Multisensor Data Fusion: Theory and Practice. CRC Press, Boca Raton (2017)

    Book  Google Scholar 

  28. Budzan, S., Kasprzyk, J.: Fusion of 3D laser scanner and depth images for obstacle recognition in mobile applications. Opt. Lasers Eng. 77, 230–240 (2016)

    Article  Google Scholar 

  29. Bjerkeng, M., Pettersen, K.Y., Kyrkjebø, E.: Stereographic projection for industrial manipulator tasks: theory and experiments, pp. 4676–4683. IEEE (2011)

    Google Scholar 

  30. Błachuta, M., Czyba, R., Janusz, W., Szafrański, G.: Data fusion algorithm for the altitude and vertical speed estimation of the VTOL platform. J. Intell. Robot. Syst. 74, 413–420 (2014)

    Article  Google Scholar 

  31. Liu, L., Kuo, S.M., Zhou, M.: Virtual sensing techniques and their applications. In: 2009 International Conference on Networking, Sensing and Control, pp. 31–36. IEEE, Okayama, Japan (2009)

    Google Scholar 

  32. Lee, M.C., Park, M.C.: Artificial potential field based path planning for mobile robots using a virtual obstacle concept. In: Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics AIM 2003, pp. 735–740. IEEE, Kobe, Japan (2003)

    Google Scholar 

  33. Ziebinski, A., Cupek, R., Piech, A.: Distributed control architecture for the autonomous mobile platform. Thessaloniki, Greece, p. 080012 (2018)

    Google Scholar 

  34. Weyrich, M., Schmidt, J.-P., Ebert, C.: Machine-to-Machine communication. IEEE Softw. 31, 19–23 (2014)

    Article  Google Scholar 

  35. Cupek, R., Ziebinski, A., Fojcik, M.: An ontology model for communicating with an autonomous mobile platform. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2017. CCIS, vol. 716, pp. 480–493. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58274-0_38

    Chapter  Google Scholar 

  36. Kohlbrecher, S., von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable SLAM system with full 3D motion estimation. In: 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, pp. 155–160. IEEE, Kyoto, Japan (2011)

    Google Scholar 

  37. Hankel, M., Rexroth, B.: The reference architectural model industrie 4.0 (rami 4.0). ZVEI (2015)

    Google Scholar 

  38. Cupek, R., Drewniak, M., Ziebinski, A.: Information models for a new generation of manufacturing systems - a case study of automated guided vehicle. In: 2019 IEEE International Conference on Systems, Man and Cybernetics SMC, pp. 858–864. IEEE, Bari, Italy (2019)

    Google Scholar 

  39. Lang, J., Iwanitz, F., Burke, T.: OPC from Data Access to Unified Architecture. OPC Found. Softing (2010)

    Google Scholar 

  40. Cupek, R., Drewniak, M., Ziebinski, A., Fojcik, M.: Digital twins for highly customized electronic devices – case study on a rework operation. IEEE Access 7, 164127–164143 (2019)

    Article  Google Scholar 

  41. Varghese, A., Tandur, D.: Wireless requirements and challenges in Industry 4.0. In: 2014 International Conference on Contemporary Computing and Informatics (IC3I), pp. 634–638. IEEE, Mysore, India (2014)

    Google Scholar 

  42. Elgazzar, M.H.: Perspectives on M2M protocols. In: 2015 IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS), pp. 501–505. IEEE, Cairo, Abbassia, Egypt (2015)

    Google Scholar 

  43. Fadlullah, Z.M., Fouda, M.M., Kato, N., Takeuchi, A., Iwasaki, N., Nozaki, Y.: Toward intelligent machine-to-machine communications in smart grid. IEEE Commun. Mag. 49, 60–65 (2011)

    Article  Google Scholar 

  44. Cheng, Y., Tao, F., Xu, L., Zhao, D.: Advanced manufacturing systems: supply–demand matching of manufacturing resource based on complex networks and Internet of Things. Enterp. Inf. Syst. 12(7), 1–18 (2016)

    Google Scholar 

  45. Trawiński, B., Smętek, M., Lasota, T., Trawiński, G.: Evaluation of fuzzy system ensemble approach to predict from a data stream. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) ACIIDS 2014. LNCS (LNAI), vol. 8398, pp. 137–146. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05458-2_15

    Chapter  Google Scholar 

  46. Golab, L., Özsu, M.T.: Processing sliding window multi-joins in continuous queries over data streams. Elsevier, pp. 500–511 (2003)

    Google Scholar 

  47. Hammad, M.A., Aref, W.G., Elmagarmid, A.K.: Stream window join: tracking moving objects in sensor-network databases. In: 15th International Conference on Scientific and Statistical Database Management 2003, pp. 75–84. IEEE Computer Society, Cambridge, MA, USA (2003)

    Google Scholar 

  48. Gomes, J., Choi, H.-A.: Adaptive optimization of join trees for multi-join queries over sensor streams. Inf. Fusion 9, 412–424 (2008)

    Article  Google Scholar 

  49. Ji, Y., Liu, S., Lu, L., Lang, X., Yao, H., Wang, R.: VC-TWJoin: a stream join algorithm based on variable update cycle time window. In: 2018 IEEE 22nd International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 178–183. IEEE, Nanjing, China (2018)

    Google Scholar 

  50. Zhuang, Z., Feng, T., Pan, Y., Ramachandra, H., Sridharan, B.: Effective multi-stream joining in apache samza framework. In: 2016 IEEE International Congress on Big Data, pp. 267–274. IEEE, San Francisco, CA, USA (2016)

    Google Scholar 

  51. Malysiak-Mrozek, B., Lipinska, A., Mrozek, D.: Fuzzy join for flexible combining big data lakes in cyber-physical systems. IEEE Access 6, 69545–69558 (2018)

    Article  Google Scholar 

  52. Wachowicz, A., Małysiak-Mrozek, B., Mrozek, D.: Combining data from fitness trackers with meteorological sensor measurements for enhanced monitoring of sports performance. In: Rodrigues, J.M.F., Cardoso, P.J.S., Monteiro, J., Lam, R., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2019. LNCS, vol. 11538, pp. 692–705. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22744-9_54

    Chapter  Google Scholar 

Download references

Acknowledgments

The research leading to these results received funding from the Norway Grants 2014–2021, which is operated by the National Centre for Research and Development under the project “Automated Guided Vehicles integrated with Collaborative Robots for Smart Industry Perspective” (Project Contract no.: NOR/POLNOR/CoBotAGV/0027/2019 -00) and partially by the Polish Ministry of Science and Higher Education Funds for Statutory Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Ziebinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ziebinski, A. et al. (2021). Challenges Associated with Sensors and Data Fusion for AGV-Driven Smart Manufacturing. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12745. Springer, Cham. https://doi.org/10.1007/978-3-030-77970-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77970-2_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77969-6

  • Online ISBN: 978-3-030-77970-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics