Skip to main content

Data Augmentation for Enlarging Student Feature Space and Improving Random Forest Success Prediction

  • Conference paper
  • First Online:
Artificial Intelligence in Education (AIED 2021)

Abstract

One of the main problems encountered when predicting student success, as a tool to aid students, is the lack of data used to model each student. This lack of data is due in part to the small number of students in each university course and also, the limited number of features that describe the educational background for each student. In this article, we introduce new features by augmenting the student feature space to obtain an improved model. These features are divided into several groups, namely, external added data, metric and counter data, and evolutive data. We will then assess the quality of the augmented data to classify at-risk students in their first year of university. For this article, the classifiers are built using Random Forests. As this learning method measures variable importance, we can enquire on the relevance of the augmented data, as well as the data groups that allow a more significant collection of features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) (Text with EEA relevance). http://data.europa.eu/eli/reg/2016/679/2016-05-04

  2. Balakrishan, G.: Predicting student retention in massive open online courses using hidden Markov models. Ph.D. thesis, EECS Department, University of California, Berkeley (2013)

    Google Scholar 

  3. Barros, T.M., Souza Neto, P.A., Silva, I., Guedes, L.A.: Predictive models for imbalanced data: a school dropout perspective. Educ. Sci. 9(4), 275 (2019). https://doi.org/10.3390/educsci9040275. Number: 4 Publisher: Multidisciplinary Digital Publishing Institutenumber: 4 Publisher: Multidisci-plinary Digital Publishing Institute

    Article  Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  5. Choudhary, R., Gianey, H.K.: Comprehensive review on supervised machine learning algorithms. In: 2017 International Conference on Machine Learning and Data Science (MLDS) (2017). https://doi.org/10.1109/MLDS.2017.11

  6. Cortez, P., Silva, A.: Using data mining to predict secondary school student performance. EUROSIS (2008)

    Google Scholar 

  7. Del Bonifro, F., Gabbrielli, M., Lisanti, G., Zingaro, S.P.: Student dropout prediction. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12163, pp. 129–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52237-7_11

    Chapter  Google Scholar 

  8. Gonçalves, O., Beltrame, W.: Socioeconomic data mining and student dropout: analyzing a higher education course in Brazil. Int. J. Innov. Educ. Res. 8, 505–518 (2020). https://doi.org/10.31686/ijier.vol8.iss8.2554

    Article  Google Scholar 

  9. Hussain, S., Dahan, N.A., Ba-Alwi, F.M., Ribata, N.: Educational data mining and analysis of students’ academic performance using WEKA. Indonesian J. Electr. Eng. Comput. Sci. 9(2), 447–459 (2018). https://doi.org/10.11591/ijeecs.v9.i2.pp447-459

    Article  Google Scholar 

  10. Kovacic, Z.: Early prediction of student success: mining students enrolment data, pp. 647–665 (2010). https://doi.org/10.28945/1281

  11. Ma, C., Yao, B., Ge, F., Pan, Y., Guo, Y.: Improving prediction of student performance based on multiple feature selection approaches. In: Proceedings of the 2017 International Conference on E-Education, E-Business and E-Technology. ICEBT 2017, pp. 36–41. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3141151.3141160

  12. Mahboob, T., Irfan, S., Karamat, A.: A machine learning approach for student assessment in E-learning using Quinlan’s C4.5, Naive bayes and random forest algorithms. In: 2016 19th International Multi-Topic Conference (INMIC), pp. 1–8 (2016). https://doi.org/10.1109/INMIC.2016.7840094

  13. Miguéis, V.L., Freitas, A., Garcia, P.J.V., Silva, A.: Early segmentation of students according to their academic performance: a predictive modelling approach. Decis. Supp. Syst. 115, 36–51 (2018). https://doi.org/10.1016/j.dss.2018.09.001

    Article  Google Scholar 

  14. Razafindratsima, N.: État de l’Enseignement supérieur, de la Recherche et de l’Innovation en France. Les parcours et la réussite en Licence, Licence professionnelle et Master à - l’université - État de l’Enseignement supérieur, de la Recherche et de l’Innovation en France n\(^\circ \)13, 50–51 (2020). https://publication.enseignementsup-recherche.gouv.fr/eesr/FR/T149/les_parcours_et_la_reussite_en_licence_licence_professionnelle_et_master_a_l_universite/

  15. Sorour, S.E., Mine, T.: Building an interpretable model of predicting student performance using comment data mining. In: 2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), pp. 285–291 (2016). https://doi.org/10.1109/IIAI-AAI.2016.114

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy H. Bell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bell, T.H., Dartigues-Pallez, C., Jaillet, F., Genolini, C. (2021). Data Augmentation for Enlarging Student Feature Space and Improving Random Forest Success Prediction. In: Roll, I., McNamara, D., Sosnovsky, S., Luckin, R., Dimitrova, V. (eds) Artificial Intelligence in Education. AIED 2021. Lecture Notes in Computer Science(), vol 12749. Springer, Cham. https://doi.org/10.1007/978-3-030-78270-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78270-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78269-6

  • Online ISBN: 978-3-030-78270-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics