Skip to main content

Adaptively Scaffolding Cognitive Engagement with Batch Constrained Deep Q-Networks

  • Conference paper
  • First Online:
Artificial Intelligence in Education (AIED 2021)

Abstract

Scaffolding student engagement is a central challenge in adaptive learning environments. The ICAP framework defines levels of cognitive engagement with a learning activity in terms of four different engagement modes—Interactive, Constructive, Active, and Passive—and it predicts that increased cognitive engagement will yield improved learning. However, a key open question is how best to translate the ICAP theory into the design of adaptive scaffolding in adaptive learning environments. Specifically, should scaffolds be designed to require the highest levels of cognitive engagement (i.e., Interactive and Constructive modes) with every instance of feedback or knowledge component? To answer this question, in this paper we investigate a data-driven pedagogical modeling framework based on batch-constrained deep Q-networks, a type of deep reinforcement learning (RL) method, to induce policies for delivering ICAP-inspired scaffolding in adaptive learning environments. The policies are trained with log data from 487 learners as they interacted with an adaptive learning environment that provided ICAP-inspired feedback and remediation. Results suggest that adaptive scaffolding policies induced with batch-constrained deep Q-networks outperform heuristic policies that strictly follow the ICAP model without RL-based tailoring. The findings demonstrate the utility of deep RL for tailoring scaffolding for learner cognitive engagement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ai, F., Chen, Y., Guo, Y., Zhao, Y., Wang, Z., Fu, G.: Concept-aware deep knowledge tracing and exercise recommendation in an online learning system. In: Proceedings of the 12th International Conference on Educational Data Mining, pp. 240–245 (2019)

    Google Scholar 

  2. Sanz Ausin, M., Maniktala, M., Barnes, T., Chi, M.: Exploring the impact of simple explanations and agency on batch deep reinforcement learning induced pedagogical policies. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12163, pp. 472–485. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52237-7_38

    Chapter  Google Scholar 

  3. Ausin, M.S., Azizsoltani, H., Barnes, T., Chi, M.: Leveraging deep reinforcement learning for pedagogical policy induction in an intelligent tutoring system. In: Proceedings of the 12th International Conference on Educational Data Mining, pp. 168–177 (2019)

    Google Scholar 

  4. Azizsoltani, H., Jin, Y.: Unobserved is not equal to non-existent: using Gaussian processes to infer immediate rewards across contexts. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence, pp. 1974–1980 (2019). https://doi.org/10.24963/ijcai.2019/273

  5. Chi, M., VanLehn, K., Litman, D.: Do micro-level tutorial decisions matter: applying reinforcement learning to induce pedagogical tutorial tactics. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010. LNCS, vol. 6094, pp. 224–234. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13388-6_27

    Chapter  Google Scholar 

  6. Chi, M.T.H., et al.: Translating the ICAP theory of cognitive engagement into practice. Cogn. Sci. 42(6), 1777–1832 (2018). https://doi.org/10.1111/cogs.12626

    Article  Google Scholar 

  7. Chi, M.T.H., Wylie, R.: The ICAP framework: Linking cognitive engagement to active learning outcomes. Educ. Psychol. 49(4), 219–243 (2014). https://doi.org/10.1080/00461520.2014.965823

    Article  Google Scholar 

  8. Doroudi, S., Aleven, V., Brunskill, E.: Where’s the reward? Int. J. Artif. Intell. Educ. 29(4), 568–620 (2019). https://doi.org/10.1007/s40593-019-00187-x

    Article  Google Scholar 

  9. Fujimoto, S., Meger, D., Precup, D.: Off-policy deep reinforcement learning without exploration. In: Proceedings of the 36th International Conference on Machine Learning, pp. 2052–2062 (2019)

    Google Scholar 

  10. Georgila, K., Core, M.G., Nye, B.D., Karumbaiah, S., Auerbach, D., Ram, M.: Using reinforcement learning to optimize the policies of an intelligent tutoring system for interpersonal skills training. In: Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems, pp. 737–745. IFAAMAS, Richland (2019). https://dl.acm.org/doi/abs/10.5555/3306127.3331763

  11. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence, pp. 2094–2100 (2016)

    Google Scholar 

  12. Hessel, M., et al.: Rainbow: combining improvements in deep reinforcement learning. In: Proceedings of the 32nd AAAI Conference on Artificial Intelligence, pp. 3215–3222 (2018)

    Google Scholar 

  13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  14. Jiang, N., Li, L.: Doubly robust off-policy value evaluation for reinforcement learning. In: Proceedings of the 33rd International Conference on Machine Learning, pp. 652–661 (2016)

    Google Scholar 

  15. Ju, S., Zhou, G., Barnes, T., Chi, M.: Pick the moment: identifying critical pedagogical decisions using long-short term rewards. In: Proceedings of the 13th International Conference on Educational Data Mining, pp. 126–136 (2020)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  17. Kodinariya, T.M., Makwana, P.R.: Review on determining number of cluster in K-Means clustering. Int. J. Adv. Res. Comput. Sci. Manag. Stud. 1(6), 90–95 (2013)

    Google Scholar 

  18. Lim, J., et al.: Active learning through discussion: ICAP framework for education in health professions. BMC Med. Educ. 19(1), Article 47 (2019). https://doi.org/10.1186/s12909-019-1901-7

  19. Marx, J.D., Cummings, K.: Normalized change. Am. J. Phys. 75(1), 87–91 (2007). https://doi.org/10.1119/1.2372468

    Article  Google Scholar 

  20. Mitrovic, A., Gordon, M., Piotrkowicz, A., Dimitrova, V.: Investigating the effect of adding nudges to increase engagement in active video watching. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds.) AIED 2019. LNCS (LNAI), vol. 11625, pp. 320–332. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23204-7_27

    Chapter  Google Scholar 

  21. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015). https://doi.org/10.1038/nature14236

    Article  Google Scholar 

  22. van de Pol, J., Volman, M., Oort, F., Beishuizen, J.: The effects of scaffolding in the classroom: support contingency and student independent working time in relation to student achievement, task effort and appreciation of support. Instr. Sci. 43(5), 615–641 (2015). https://doi.org/10.1007/s11251-015-9351-z

    Article  Google Scholar 

  23. Sawyer, R., Rowe, J., Lester, J.: Balancing learning and engagement in game-based learning environments with multi-objective reinforcement learning. In: André, E., Baker, R., Hu, X., Rodrigo, M.M.T., du Boulay, B. (eds.) AIED 2017. LNCS (LNAI), vol. 10331, pp. 323–334. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61425-0_27

    Chapter  Google Scholar 

  24. Schaul, T., Quan, J., Antonoglou, I., Silver, D.: Prioritized experience replay. arXiv preprint arXiv:1511.05952 (2015)

  25. Sottilare, R.A., Brawner, K.W., Goldberg, B.S., Holden, H.K.: The generalized intelligent framework for tutoring (GIFT). US Army Research Laboratory–Human Research & Engineering Directorate (ARL-HRED), Orlando (2012)

    Google Scholar 

  26. Spain, R., Rowe, J., Goldberg, B., Pokorny, R., Lester, J.: Enhancing learning outcomes through adaptive remediation with GIFT. In: Proceedings of the Interservice/Industry Training, Simulation and Education Conference. Paper No. 19275 (2019)

    Google Scholar 

  27. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, 2nd edn. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  28. Thomas, P., Brunskill, E.: Data-efficient off-policy policy evaluation for reinforcement learning. In: Proceedings of the 33rd International Conference on Machine Learning, pp. 2139–2148 (2016)

    Google Scholar 

  29. Wang, F.: Reinforcement learning in a POMDP based intelligent tutoring system for optimizing teaching strategies. Int. J. Inf. Educ. Technol. 8(8), 553–558 (2018). https://doi.org/10.18178/ijiet.2018.8.8.1098

    Article  Google Scholar 

  30. Wang, P., Rowe, J., Min, W., Mott, B., Lester, J.: High-fidelity simulated players for interactive narrative planning. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 3884–3890 (2018). https://doi.org/10.24963/ijcai.2018/540

  31. Wang, P., Rowe, J.P., Min, W., Mott, B.W., Lester, J.C.: Interactive narrative personalization with deep reinforcement learning. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 3852–3858 (2017). https://doi.org/10.24963/ijcai.2017/538

  32. Wiggins, B.L., Eddy, S.L., Grunspan, D.Z., Crowe, A.J.: The ICAP active learning framework predicts the learning gains observed in intensely active classroom experiences. AERA Open. 3(2), 1–14 (2017). https://doi.org/10.1177/2332858417708567

    Article  Google Scholar 

  33. Zhou, G., Yang, X., Azizsoltani, H., Barnes, T., Chi, M.: Improving student-system interaction through data-driven explanations of hierarchical reinforcement learning induced pedagogical policies. In: Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization, pp. 284–292. ACM, New York (2020). https://doi.org/10.1145/3340631.3394848

Download references

Acknowledgements

The research described herein has been sponsored by the U.S. Army Research Laboratory under cooperative agreement W911NF-15–2-0030. The statements and opinions expressed in this article do not necessarily reflect the position or the policy of the United States Government, and no official endorsement should be inferred.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahmid Morshed Fahid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fahid, F.M., Rowe, J.P., Spain, R.D., Goldberg, B.S., Pokorny, R., Lester, J. (2021). Adaptively Scaffolding Cognitive Engagement with Batch Constrained Deep Q-Networks. In: Roll, I., McNamara, D., Sosnovsky, S., Luckin, R., Dimitrova, V. (eds) Artificial Intelligence in Education. AIED 2021. Lecture Notes in Computer Science(), vol 12748. Springer, Cham. https://doi.org/10.1007/978-3-030-78292-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78292-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78291-7

  • Online ISBN: 978-3-030-78292-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics