Skip to main content

Salicylic Acid for Vigorous Plant Growth and Enhanced Yield Under Harsh Environment

  • Chapter
  • First Online:
Plant Performance Under Environmental Stress

Abstract

Due to the sessile nature of green plants, abiotic stresses have been established potentially as a menace to agriculture productivity worldwide. The reason lies in their negative influence on the plant’s physiological, morphological, biochemical, and molecular mechanisms from the juvenile stage to maturity. Eventually, the harrowing effects of these stresses cause up to 70% yield loss in staple food crops. In response to tackle these adversities, the phytohormones have been projected strongly as a potential tool for sustainable mitigation of toxic effects of abiotic stresses. Next to jasmonic acid, salicylic acid (SA) is one such another immunity providing phenolic hormone that contributes to the modulation of growth of plants and also in the amelioration of different stresses. Under stress conditions, it has been identified as crucial for various physiological processes such as photosynthesis, synthesis of osmolyte glycine betaine (GB), N-metabolism, antioxidant defense system reinforcement, and offsetting plant-water relations. Apart from imparting resistance to the plants under biotic-stress, SA is employed to boost tolerance in plants for major abiotic stresses like cold, metal, metalloids, hyper-ionic, osmotic, drought, and heat by regulating transcriptional reprogramming of various stress-responsive genes. Therefore, this chapter is an attempt to significantly highlight the SA regulating growth and developmental aspects of stressed plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BA2H:

Benzoic acid-2-hydroxylase

IC:

Isochorismate

ICS:

Isochorismate synthase

IPL:

Isochorismate pyruvate lyase

MeSA:

Methyl salicylate

MeSAG:

Methyl salicylate O-β-glucoside

PAL:

Phenylalanine ammonia lyase

PAL:

Phenylalanine ammonia-lyase

PR:

Pathogenesis-related proteins

SA:

Salicylic acid

SAG:

SA O-β-glucoside

SAGT:

SA glucosyltransferase

SAMT:

SA methyltransferase

SGE:

Salicyloyl glucose ester

References

  • Abdel Latef AA, Chaoxing H (2014) Does the inoculation with Glomus mosseae improves salt tolerance in pepper plants? J Plant Growth Regul 33:644–653

    Article  CAS  Google Scholar 

  • Abdelaal KA, Attia KA, Alamery SF, El-Afry MM, Ghazy AI, Tantawy DS, Al-Doss AA, El-Shawy ESE, Abu-Elsaoud AM, Hafez YM (2020) Exogenous application of proline and salicylic acid can mitigate the injurious impacts of drought stress on barley plants associated with physiological and histological characters. Sustainability 12:1736

    Article  CAS  Google Scholar 

  • Acharya BR, Assmann SM (2009) Hormone interactions in stomatal function. Plant Mol Biol 69:451–462

    Article  PubMed  CAS  Google Scholar 

  • Agtuca B, Rieger E, Hilger K, Song L, Robert CA, Erb M, Ferrieri RA (2014) Carbon-11 reveals opposing roles of auxin and salicylic acid in regulating leaf physiology, leaf metabolism, and resource allocation patterns that impact root growth in Zea mays. J Plant Growth Regul 33:328–339

    Article  CAS  Google Scholar 

  • Ahmad B, Jaleel H, Sadiq Y, Khan MMA, Shabbir A (2018) Response of exogenous salicylic acid on cadmium induced photosynthetic damage, antioxidant metabolism and essential oil production in peppermint. Plant Growth Regul 86:273–286

    Article  CAS  Google Scholar 

  • Alkahtani M, Omer SA, El-Naggar MA, Abdel-Kareem EM, Mahmoud MA (2011) Pathogenesis-related protein and phytoalexin induction against cucumber powdery mildew by elicitors. Int J Plant Pathol 2:63–71

    Article  Google Scholar 

  • AL-Saleh MA (2011) Pathogenic variability among five bacterial isolates of Xanthomonas campestris pv. vesicatoria, causing spot disease on tomato and their response to salicylic acid. J Saudi Soc Agric Sci 10:47–51

    Google Scholar 

  • Anamika, Mehta S, Singh B, Patra A, Islam MA (2019) Databases: a weapon from the arsenal of bioinformatics for plant abiotic stress research. In: Recent approaches in Omics for plant resilience to climate change. Springer, Cham, pp 135–169

    Google Scholar 

  • Arfan M, Athar HR, Ashraf M (2007) Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress. J Plant Physiol 164:685–694

    Article  PubMed  CAS  Google Scholar 

  • Asati SR (2013) Treatment of waste water from parboiled rice mill unit by coagulation/flocculation. Int J Life Sci Biotechnol Pharm Res 2:264–277

    Google Scholar 

  • Bandurska H, Stroinski A (2005) The effect of salicylic acid on barley response to water deficit. Acta Physiol Plant 27:379–386

    Article  CAS  Google Scholar 

  • Bharti J, Sahil, Mehta S, Ahmad S, Singh B, Padhy AK, Srivastava N, Pandey V (2021) Mitogen-Activated Protein Kinase, Plants, and Heat Stress. In Harsh Environment and Plant Resilience: Molecular and Functional Aspects. Springer Nature, Switzerland AG, pp. 323–354

    Google Scholar 

  • Bijanzadeh E, Naderi R, Egan TP (2019) Exogenous application of humic acid and salicylic acid to alleviate seedling drought stress in two corn (Zea mays L.) hybrids. J Plant Nutr 42:1483–1495

    Article  CAS  Google Scholar 

  • Blum A (2005) Drought resistance, water-use deficiency, and yield potential—are they compatible, dissonant, or mutually exclusive. Aust J Agric Res 56:1159–1168

    Article  Google Scholar 

  • Borsani O, Valpuesta V, Botella MA (2001) Evidence for a role of salicylic acid in the oxidat2ive damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126:1024–1030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Canales FJ, Montilla-Bascón G, Rispail N, Prats E (2019) Salicylic acid regulates polyamine biosynthesis during drought responses in oat. Plant Signal Behav 14:e1651183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 8:1583–1592

    Google Scholar 

  • Chadha KC, Brown SA (1974) Biosynthesis of phenolic acids in tomato plants infected with Agrobacterium tumefaciens. Can J Bot 52:2041–2047

    Article  CAS  Google Scholar 

  • Chen Z, Zheng Z, Huang J, Lai Z, Fan B (2009) Biosynthesis of salicylic acid in plants. Plant Signal Behav 4:493–496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  PubMed  CAS  Google Scholar 

  • Clarke SM, Mur LA, Wood JE, Scott IM (2004) Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant J 38:432–447

    Article  PubMed  CAS  Google Scholar 

  • Cleland CF, Ajami A (1974) Identification of the flower-inducing factor isolated from aphid honeydew as being salicylic acid. Plant Physiol 54:904–906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Conrath U, Thulke O, Katz V, Schwindling S, Kohler A (2001) Priming as a mechanism in induced systemic resistance of plants. Eur J Plant Pathol 107:113–119

    Article  CAS  Google Scholar 

  • Das R, Jayalekshmy VG (2015) Mechanism of heavy metal tolerance and improvement of tolerance in crop plants. J Glob Biosci 4:2678–2698

    Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (2000) Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. J Plant Physiol 156:659–665

    Article  CAS  Google Scholar 

  • Dean JV, Delaney SP (2008) Metabolism of salicylic acid in wild-type, ugt74f1 and ugt74f2 glucosyltransferase mutants of Arabidopsis thaliana. Plant Physiol 132:417–425

    Article  CAS  Google Scholar 

  • Dean JV, Mohammed LA, Fitzpatrick T (2005) The formation, vacuolar localization, and tonoplast transport of salicylic acid glucose conjugates in tobacco cell suspension cultures. Planta 221:287–296

    Article  PubMed  CAS  Google Scholar 

  • Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF (2011) Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9:e0156

    Article  PubMed  PubMed Central  Google Scholar 

  • Dewdney J, Reuber TL, Wildermuth MC, Devoto A, Cui J, Stutius LM, Ausubel FM (2000) Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen. Plant J 24(2):205–218

    Article  PubMed  CAS  Google Scholar 

  • Dilawari R, Kaur N, Priyadarshi N, Kumar B, Abdelmotelb KF, Lal SK, Singh B, Tripathi A, Aggarwal SK, Jat BS, Mehta S (2021) Genome Editing: A Tool from the Vault of Science for Engineering Climate-Resilient Cereals. In: Harsh Environment and Plant Resilience: Molecular and Functional Aspects. Springer Nature, Switzerland AG, pp 45–72

    Google Scholar 

  • Dong X (2004) NPR1, all things considered. Curr Opin Plant Biol 7:547–552

    Article  PubMed  CAS  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    Article  PubMed  CAS  Google Scholar 

  • El Tayeb MA (2005) Response of barley grains to the interactive effect of salinity and salicylic acid. Plant Growth Regul 45:215–224

    Article  CAS  Google Scholar 

  • El-Basyouni S, Chen D, Ibrahim RK, Neish AC, Towers GHN (1964) The biosynthesis of hydroxybenzoic acids in higher plants. Phytochemistry 3:485–492

    Article  CAS  Google Scholar 

  • El-Esawi MA, Elansary HO, El-Shanhorey NA, Abdel-Hamid AM, Ali HM, Elshikh MS (2017) Salicylic acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Front Physiol 8:716

    Article  PubMed  PubMed Central  Google Scholar 

  • Embiale A, Hussein A, Husen A, Sahile S, Mohammed K (2016) Differential sensitivity of Pisum sativum L. cultivars to water-deficit stress: changes in growth, water status, chlorophyll fluorescence and gas exchange attributes. J Agron 15:45–57

    Article  CAS  Google Scholar 

  • Ergin S, Gülen H, Kesici M, Turhan E, Ipek A, Köksal N (2016) Effects of high temperature stress on enzymatic and nonenzymatic antioxidants and proteins in strawberry plants. Turk J Agric For 40:908–917

    Article  CAS  Google Scholar 

  • Farheen J, Mansoor S, Abideen Z (2018) Exogenously applied salicylic acid improved growth, photosynthetic pigments and oxidative stability in mungbean seedlings (Vigna radiata) at salt stress. Pak J Bot 50:901–912

    CAS  Google Scholar 

  • Fayez KA, Bazaid SA (2014) Improving drought and salinity tolerance in barley by application of salicylic acid and potassium nitrate. J Saudi Soc Agric Sci 23:45–55

    Google Scholar 

  • Frfy S, Carver TLW (1998) Induction of systemic resistance in pea to pea powdery mildew by exogenous application of salicylic acid. J Phytopathol 146:239–245

    Article  Google Scholar 

  • Fu ZQ, Dong X (2013) Systemic acquired resistance: turning local infection into global defense. Annu Rev Plant Biol 64:839–863

    Article  PubMed  CAS  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    Article  PubMed  CAS  Google Scholar 

  • Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 25:486–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcion C, Métraux JP (2006) FiRe and microarrays: a fast answer to burning questions. Trends Plant Sci 11(7):320–322

    Article  PubMed  CAS  Google Scholar 

  • Garcion C, Lohmann A, Lamodière E, Catinot J, Buchala A, Doermann P, Métraux JP (2008) Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis. Plant Physiol 147(3):1279–1287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gary EV, Goodman RM (2004) Systemic acquired resistance and induce systemic resistance in conventional agriculture. Crop Sci 44:1920–1934

    Article  Google Scholar 

  • Getnet Z, Husen A, Fetene M, Yemata G (2015) Growth, water status, physiological, biochemical and yield response of stay green sorghum {Sorghum bicolor (L.) Moench} varieties—a field trial under drought-prone area in Amhara regional state, Ethiopia. J Agron 14:188–202

    Article  CAS  Google Scholar 

  • Goodspeed D, Chehab EW, Minvenditti A, Braam J, Covington MF (2012) From the cover: Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. Proc Natl Acad Sci U S A 109:4674–4677

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu CS, Yang YH, Shao YF, Wu KW, Liu ZL (2018) The effects of exogenous salicylic acid on alleviating cadmium toxicity in Nymphaea tetragona Georgi. S Afr J Bot 114:267–271

    Article  CAS  Google Scholar 

  • Gunes A, Inal A, Alpaslan M, Eraslan F, Bagci EG, Cicek N (2007) Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. J Plant Physiol 164:728–736

    Article  PubMed  CAS  Google Scholar 

  • Guo B, Liang Y, Zhue Y (2009) Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice. J Plant Physiol 166:20–31

    Article  PubMed  CAS  Google Scholar 

  • Halder V, Suliman MN, Kaschani F, Kaiser M (2019) Plant chemical genetics reveals colistin sulphate as a SA and NPR1-independent PR1 inducer functioning via a p38-like kinase pathway. Sci Rep 9:1–12

    Article  Google Scholar 

  • Hamada AM (2001) Salicylic acid versus salinity-drought-induced stress on wheat seedlings. Rostl Vyroba 47:444–450

    CAS  Google Scholar 

  • Hara M, Furukawa J, Sato A, Mizoguchi T, Miura K (2012) Abiotic stress and role of salicylic acid in plants. In: Abiotic stress responses in plants. Springer, New York, pp 235–251

    Chapter  Google Scholar 

  • Hassan TU, Bano A, Naz I (2017) Alleviation of heavy metals toxicity by the application of plant growth promoting rhizobacteria and effects on wheat grown in saline sodic field. Int J Phytoremediation 19:522–529

    Article  PubMed  CAS  Google Scholar 

  • Horvath E, Janda T, Szalai G, Páldi E (2002) In vitro salicylic acid inhibition of catalase activity in maize: differences between the isozymes and a possible role in the induction of chilling tolerance. Plant Sci 163:1129–1135

    Article  CAS  Google Scholar 

  • Huang C, Wang D, Sun L, Wei L (2016) Effects of exogenous salicylic acid on the physiological characteristics of Dendrobium officinale under chilling stress. Plant Growth Regul 79:199–208

    Article  CAS  Google Scholar 

  • Husen A (2010) Growth characteristics, physiological and metabolic responses of teak (Tectona grandis Linn. f.) clones differing in rejuvenation capacity subjected to drought stress. Silva Genet 59:124–136

    Article  Google Scholar 

  • Husen A, Iqbal M, Aref IM (2014) Growth, water status and leaf characteristics of Brassica carinata under drought and rehydration conditions. Braz J Bot 37:217–227

    Article  Google Scholar 

  • Husen A, Iqbal M, Aref IM (2016) IAA-induced alteration in growth and photosynthesis of pea (Pisum sativum L.) plants grown under salt stress. J Environ Biol 37:421–429

    CAS  Google Scholar 

  • Husen A, Iqbal M, Aref IM (2017) Plant growth and foliar characteristics of faba bean (Vicia faba L.) as affected by indole-acetic acid under water-sufficient and water-deficient conditions. J Environ Biol 38:179–186

    Article  Google Scholar 

  • Husen A, Iqbal M, Sohrab SS, Ansari MKA (2018) Salicylic acid alleviates salinity caused damage to foliar functions, plant growth and antioxidant system in Ethiopian mustard (Brassica carinata a. Br.). Agric Food Secur 7:44

    Article  Google Scholar 

  • Husen A, Iqbal M, Khanum N, Aref IM, Sohrab SS, Meshresa G (2019) Modulation of salt-stress tolerance of Niger (Guizotia abyssinica), an oilseed plant, by application of salicylic acid. J Environ Biol 40:94–104

    Article  Google Scholar 

  • Hussein M, Embiale A, Husen A, Aref IM, Iqbal M (2017) Salinity-induced modulation of plant growth and photosynthetic parameters in faba bean (Vicia faba) cultivars. Pak J Bot 49:867–877

    CAS  Google Scholar 

  • Iba K (2002) Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annu Rev Plant Biol 53:225–245

    Article  PubMed  CAS  Google Scholar 

  • Ignatenko A, Talanova V, Repkina N, Titov A (2019) Exogenous salicylic acid treatment induces cold tolerance in wheat through promotion of antioxidant enzyme activity and proline accumulation. Acta Physiol Plant 41:80

    Article  CAS  Google Scholar 

  • Jahan MS, Wang Y, Shu S, Zhong M, Chen Z, Wu J, Sun J, Guo S (2019) Exogenous salicylic acid increases the heat tolerance in Tomato (Solanum lycopersicum L) by enhancing photosynthesis efficiency and improving antioxidant defense system through scavenging of reactive oxygen species. Sci Hortic 247:421–429

    Article  CAS  Google Scholar 

  • Janda T, Szalai G, Tari I, Páldi E (1999) Hydroponic treatment with salicylic acid decreases the effect of chilling injury in maize (Zea mays L.) plants. Planta 208:175–180

    Article  CAS  Google Scholar 

  • Janda T, Szalai G, Antunovics ZS, Horvath E, Páldi E (2000) Effect of benzoic acid and aspirin on chilling tolerance and photosynthesis in young maize plants. Maydica 45:29–33

    Google Scholar 

  • Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2013) Salicylic acid improves salinity tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K+ loss via a GORK channel. J Exp Bot 64:2255–2268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Josine TL, Ji J, Wang G, Guan CF (2011) Advances in genetic engineering for plants abiotic stress control. Afr J Biotechnol 10:5402–5413

    Google Scholar 

  • Kang HM, Saltveit ME (2002) Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiol Plant 115:571–576

    Article  PubMed  CAS  Google Scholar 

  • Kang GZ, Wang CH, Sun GC, Wang ZX (2003) Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environ Exp Bot 50:9–15

    Article  CAS  Google Scholar 

  • Kang G, Li G, Xu W, Peng X, Han Q, Zhu Y (2012) Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in wheat. J Proteome Res 11:6066–6079

    Article  PubMed  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt and freezing tolerance by gene transfer of a single stress inducible transcriptional factor. Nat Biotechnol 17:287–291

    Article  PubMed  CAS  Google Scholar 

  • Khan MIR, Khan NA (2013) Salicylic acid and jasmonates: approaches in abiotic stress tolerance. J Plant Biochem Physiol 1:4

    Article  Google Scholar 

  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50(2):347–363

    Article  PubMed  CAS  Google Scholar 

  • Kohli SK, Handa N, Kaur R, Kumar V, Khanna K, Bakshi P, Bhardwaj R (2017) Role of salicylic acid in heavy metal stress tolerance: insight into underlying mechanism. In: Salicylic Acid: A Multifaceted Hormone. Springer, Singapore, pp 123–144

    Google Scholar 

  • Kosova K, Prasil IT, Vitamvas P, Dobrev P, Motyka V, Flokova K (2012) Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J Plant Physiol 169:567–576

    Article  PubMed  CAS  Google Scholar 

  • Kovács V, Gondor OK, Szalai G, Darkó É, Majláth I, Janda T, Pál M (2014) Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance. J Hazard Mater 280:12–19

    Article  PubMed  CAS  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165:920–931

    Article  PubMed  CAS  Google Scholar 

  • Lakhssassi N, Piya S, Bekal S, Liu S, Zhou Z, Bergounioux C, Miao L, Meksem J, Lakhssassi A, Jones K, Kassem MA (2020) A pathogenesis-related protein GmPR08-Bet VI promotes a molecular interaction between the GmSHMT08 and GmSNAP18 in resistance to Heterodera glycines. Plant Biotechnol J 18:1810–1829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lal SK, Kumar S, Sheri V, Mehta S, Varakumar P, Ram B, Borphukan B, James D, Fartyal D, Reddy MK (2018) Seed priming: an emerging technology to impart abiotic stress tolerance in crop plants. In: Advances in seed priming. Springer, Singapore, pp 41–50

    Google Scholar 

  • Lang P, Zhang CK, Ebel RC, Dane F, Dozier WA (2005) Identification of cold acclimated genes in leaves of Citrus unshiu by mRNA differential display. Gene 359:111–118

    Article  PubMed  CAS  Google Scholar 

  • Larkindale J, Huang BR (2005) Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass. Plant Growth Regul 47:17–28

    Article  CAS  Google Scholar 

  • Li Q, Wang G, Wang Y, Yang D, Guan C, Ji J (2019) Foliar application of salicylic acid alleviates the cadmium toxicity by modulation the reactive oxygen species in potato. Ecotoxicol Environ Saf 172:317–325

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Jensen CR, Andersen MN (2004) Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: its implication in altering pod set. Field Crops Res 86:1–13

    Article  CAS  Google Scholar 

  • Liu H, Liu Y, Pan Q, Yang H, Zhan J, Huang W (2006) Novel interrelationship between salicylic acid, abscisic acid, and PIP 2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves. J Exp Bot 57:3337–3347

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Liu H, Pan Q, Yang H, Zhan J, Huang W (2009) The plasma membrane H+ ATPase is related to the development of salicylic acid-induced thermotolerance in pea leaves. Planta 229:1087–1098

    Article  PubMed  CAS  Google Scholar 

  • Los DA, Murata N (2000) Regulation of enzymatic activity and gene expression by membrane fluidity. Sci Signal 62:pe1

    Google Scholar 

  • Lu T, Meng Z, Zhang G, Qi M, Sun Z, Liu Y, Li T (2017) Sub-high temperature and high light intensity induced irreversible inhibition on photosynthesis system of tomato plant (Solanum lycopersicum L.). Front Plant Sci 8:365

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Q, Zhang T, Zhang W, Su C, Yang Y, Hu D, Xu Q (2018) Alleviation of cadmium toxicity in Lemna minor by exogenous salicylic acid. Ecotoxicol Environ Saf 147:500–508

    Article  PubMed  CAS  Google Scholar 

  • Luo WT, He L, Li F, Li JK (2020) Exogenous salicylic acid alleviates the antimony (Sb) toxicity in rice (Oryza sativa L.) seedlings. J Plant Growth Regul 40:1327–1340

    Google Scholar 

  • Ma X, Zheng J, Zhang X, Hu Q, Qian R (2017) Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus (Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Front Plant Sci 8:600

    Article  PubMed  PubMed Central  Google Scholar 

  • Maeda H, Dudareva N (2012) The shikimate pathway and aromatic amino acid biosynthesis in plants. Annu Rev Plant Biol 63:73–105

    Article  PubMed  CAS  Google Scholar 

  • Malamy J, Carr JP, Klessig DF, Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250:1002–1004

    Article  PubMed  CAS  Google Scholar 

  • Marcinska I, Czyczyło-Mysza I, Skrzypek E, Grzesiak M, Janowiak F, Filek M et al (2013) Alleviation of osmotic stress effects by exogenous application of salicylic or abscisic acid on wheat seedlings. Int J Mol Sci 14:13171–13193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mathobo R, Marais D, Steyn JM (2017) The effect of drought stress on yield, leaf gaseous exchange and chlorophyll fluorescence of dry beans (Phaseolus vulgaris L.). Agric Water Manag 180:118–125

    Article  Google Scholar 

  • Mehta S, James D, Reddy MK (2019) Omics technologies for abiotic stress tolerance in plants: current status and prospects. In: Recent Approaches in Omics for Plant Resilience to Climate Change. Springer, Cham, pp 1–34

    Google Scholar 

  • Mehta S, Lal SK, Sahu KP, Venkatapuram AK, Kumar M, Sheri V, Varakumar P, Vishwakarma C, Yadav R, Jameel MR, Ali M, Achary VMM, Reddy MK (2020) CRISPR/Cas9-Edited Rice: A New Frontier for Sustainable Agriculture. In: New Frontiers in Stress Management for Durable Agriculture. Springer, Singapore, pp 427–458

    Google Scholar 

  • Mehta S, Singh B, Patra A, Tripathi A, Easwaran M, Choudhary JR, Choudhary M, Aggarwal SK (2020) Maize microbiome: current insights for the sustainable agriculture. In: Microbiomes and Plant Health. Academic Press, Massachusetts, pp 267–297

    Google Scholar 

  • Mehta S, Chakraborty A, Roy A, Singh IK, Singh A (2021) Fight Hard or Die Trying: Current Status of Lipid Signaling during Plant–Pathogen Interaction. Plants 10:1098

    Google Scholar 

  • Mehta S, Gogna M, Singh B, Patra A, Singh IK, Singh A (2021) Silicon: a plant nutritional “non-entity” for mitigating abiotic stresses. In: Plant stress biology. Springer, Singapore, pp 17–49

    Google Scholar 

  • Merret R, Carpentier MC, Favory JJ, Picart C, Descombin J, Bousquet-Antonelli C, Tillard P, Lejay L, Deragon JM, Charng YY (2017) Heat shock protein HSP101 affects the release of ribosomal protein mRNAs for recovery after heat shock. Plant Physiol 174:1216–1225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miao Y, Luo X, Gao X, Wang W, Li B, Hou L (2020) Exogenous salicylic acid alleviates salt stress by improving leaf photosynthesis and root system architecture in cucumber seedlings. Sci Hortic 272:109577

    Article  CAS  Google Scholar 

  • Mishra A, Choudhuri MA (1997) Ameliorating effects of salicylic acid on lead and mercury-induced inhibition of germination and early seedling growth of two rice cultivars. Seed Sci Technol 25:263–270

    Google Scholar 

  • Mishra A, Tripathi BD (2008) Heavy metal contamination of soil, and bioaccumulation in vegetables irrigated with treated wastewater in the tropical city of Varanasi, India. Toxicol Environ Chem 90:861–871

    Article  CAS  Google Scholar 

  • Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM et al (2013) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. Plant J 49:79–90

    Google Scholar 

  • Mora-Herrera ME, Lopez-Delgado H, Castillo-Morales A, Foyer CH (2005) Salicylic acid and H2O2 function by independent pathways in the induction of freezing tolerance in potato. Physiol Plant 125:430–440

    CAS  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    Article  PubMed  CAS  Google Scholar 

  • Munir M, Shabbir G et al (2018) Salicylic acid mediated heat stress tolerance in selected bread wheat genotypes of Pakistan. Pak J Bot 50:2141–2146

    Google Scholar 

  • Munns R (2007) Prophylactively parking sodium in the plant. New Phytol 176:501–504

    Article  PubMed  CAS  Google Scholar 

  • Mur LA, Kenton P, Atzorn R, Miersch O, Wasternack C (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 140:249–262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mutlu S, Atıcı Ö, Nalbantoğlu B, Mete E (2016) Exogenous salicylic acid alleviates cold damage by regulating antioxidative system in two barley (Hordeum vulgare L.) cultivars. Front Life Sci 9:99–109

    Article  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Noreen S, Ashraf M (2010) Modulation of salt (NaCl)-induced effects on oil composition and fatty acid profile of sunflower (Helianthus annuus L.) by exogenous application of salicylic acid. J Sci Food Agric 90:2608–2616

    Article  PubMed  CAS  Google Scholar 

  • Noreen S, Fatima K, Athar HUR, Ahmad S, Hussain K (2017) Enhancement of physio-biochemical parameters of wheat through exogenous application of salicylic acid under drought stress. J Anim Plant Sci 27:153–163

    CAS  Google Scholar 

  • Ong S, Cruz FCS (2016) Effect of exogenous application of salicylic acid on the severity of tomato leaf curl disease. J ISSAAS 22:137–145

    Google Scholar 

  • Pál M, Horváth E, Janda T, Páldi E, Szalai G (2005) Cadmium stimulates the accumulation of salicylic acid and its putative precursors in maize (Zea mays) plants. Physiol Plant 125:356–364

    Article  CAS  Google Scholar 

  • Pan Q, Zhan J, Liu H, Zhang J, Chen J, Wen P, Huang W (2006) Salicylic acid synthesized by benzoic acid 2-hydroxylase participates in the development of thermotolerance in pea plants. Plant Sci 171:226–233

    Article  CAS  Google Scholar 

  • Pan G, Liu Y, Ji L, Zhang X, He J, Huang J, Qiu Z, Liu D, Sun Z, Xu T, Liu L, Wang C, Jiang L, Cheng X, Wan J (2018) Brassinosteroids mediate susceptibility to brown planthopper by integrating with the salicylic acid and jasmonic acid. J Exp Bot 69:4433–4442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng H, Li S, Wang L, Li Y, Li Y, Zhang C, Hou X (2013) Turnip mosaic virus induces expression of the LRR II subfamily genes and regulates the salicylic acid signaling pathway in non-heading Chinese cabbage. Physiol Mol Plant Pathol 82:64–72

    Article  CAS  Google Scholar 

  • Petersen M, Brodersen P, Næsted H, Andreasson E, Lindhart U, Johansen B, Sharma SB (2000) Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120

    Article  PubMed  CAS  Google Scholar 

  • Popova LP, Maslenkova LT, Yordanova RY, Ivanova AP, Krantev AP, Szalai G, Janda T (2009) Exogenous treatment with salicylic acid attenuates cadmium toxicity in pea seedlings. Plant Physiol Biochem 47:224–231

    Article  PubMed  CAS  Google Scholar 

  • Prodhan MY, Munemasa S, Nahar MNEN, Nakamura Y, Murata Y (2018) Guard cell salicylic acid signaling is integrated into abscisic acid signaling via the Ca2+/CPK-dependent pathway. Plant Physiol 178:441–450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pushpavalli R, Zaman-Allah M, Turner NC, Baddam R, Rao MV, Vadez V (2015) Higher flower and seed number leads to higher yield under water stress conditions imposed during reproduction in chickpea. Funct Plant Biol 42:162–174

    Article  PubMed  CAS  Google Scholar 

  • Radojičić A, Li X, Zhang Y (2018) Salicylic acid: a double-edged sword for programed cell death in plants. Front Plant Sci 9:1133

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajput LS, Aggarwal SK, Mehta S, Kumar S, Nataraj V, Shivakumar M, Maheshwari HS, Yadav S, Goswami D (2021) Role of WRKY Transcription Factor Superfamily in Plant Disease Management. In: Plant Stress Biology. Springer, Singapore, pp 335–361

    Google Scholar 

  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17:603–614

    Article  PubMed  CAS  Google Scholar 

  • Raskin I (1992) Role of salicylic acid in plants. Annu Rev Plant Biol 43:439–463

    Article  CAS  Google Scholar 

  • Raskin I, Skubatz H, Tang W, Meeuse BJ (1990) Salicylic acid levels in thermogenic and non-thermogenic plants. Ann Bot 66:369–373

    Article  CAS  Google Scholar 

  • Rasool S, Ahmad A, Siddiqi TO, Ahmad P (2013) Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant 35:1039–1050

    Article  CAS  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338

    Article  PubMed  CAS  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: more than just JASMONATE-SALICYLATE antagonism. Annu Rev Phytopathol 49:317–343

    Article  PubMed  CAS  Google Scholar 

  • Sahil, Keshan R, Patra A, Mehta S, Abdelmotelb KF, Lavale SA, Chaudhary M, Aggarwal SK, Chattopadhyay A (2021) Expression and Regulation of Stress-Responsive Genes in Plants Under Harsh Environmental Conditions. In: Harsh Environment and Plant Resilience: Molecular and Functional Aspects. Springer Nature, Switzerland AG, pp 25–44

    Google Scholar 

  • Saikia R, Singh T, Kumar R, Srivastava J, Srivastava AK, Singh K, Arora DK (2003) Role of salicylic acid in systemic resistance induced by Pseudomonas fluorescens against Fusarium oxysporum f. sp. ciceri in chickpea. Microbiol Res 158:203–213

    Article  PubMed  CAS  Google Scholar 

  • Salguero-Linares J, Coll NS (2019) Plant proteases in the control of the hypersensitive response. J Exp Bot 70:2087–2095

    Article  PubMed  CAS  Google Scholar 

  • Sawada H, Shim IS, Usui K (2006) Induction of benzoic acid 2-hydroxylase and salicylic acid biosynthesis—modulation by salt stress in rice seedlings. Plant Sci 171:263–270

    Article  CAS  Google Scholar 

  • Scott IM, Clarke SM, Wood JE, Mur LA (2004) Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiol 135:1040–1049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sekhon PS, Sangha MK (2019) Influence of different SAR elicitors on induction and expression of PR-proteins in Potato and Muskmelon against Oomycete pathogens. Indian Phytopathol 72:43–51

    Article  Google Scholar 

  • Shahidi F, Ambigaipalan P (2015) Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects. A review. J Funct Foods 18:820–897

    Article  CAS  Google Scholar 

  • Shakirova FM, Allagulova CR, Maslennikova DR, Klyuchnikova EO, Avalbaev AM, Bezrukova MV (2016) Salicylic acid-induced protection against cadmium toxicity in wheat plants. Environ Exp Bot 122:19–28

    Article  CAS  Google Scholar 

  • Sharma P, Sharma MMM, Patra A, Vashisth M, Mehta S, Singh B, Tiwari M, Pandey V (2020) The role of key transcription factors for cold tolerance in plants. In: Transcription factors for abiotic stress tolerance in plants. Academic, London, pp 123–152

    Chapter  Google Scholar 

  • Sharma P, Sharma MMM, Malik A, Vashisth M, Singh D, Kumar R, Singh B, Patra A, Mehta S, Pandey V (2021) Rhizosphere, Rhizosphere Biology, and Rhizospheric Engineering. In: Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management. Springer, Cham, pp 577–624

    Google Scholar 

  • Shen H, Zhao B, Xu J, Zheng X, Huang W (2016) Effects of salicylic acid and calcium chloride on heat tolerance in Rhododendron ‘Fen Zhen Zhu’. J Am Soc Hortic Sci 141:363–372

    Article  CAS  Google Scholar 

  • Shi Q, Zhu Z (2008) Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environ Exp Bot 63:317–326

    Article  CAS  Google Scholar 

  • Shin H, Min K, Arora R (2018) Exogenous salicylic acid improves freezing tolerance of spinach (Spinacia oleracea L.) leaves. Cryobiology 81:192–200

    Article  PubMed  CAS  Google Scholar 

  • Shulaev V, Silverman P, Raskin I (1997) Airborne signaling by methyl salicylate in plant pathogen resistance. Nature 385:718–721

    Article  CAS  Google Scholar 

  • Sillero JC, Rojas-Molina MM, Avila CM, Rubiales D (2012) Induction of systemic acquired resistance against rust, ascochyta blight and broomrape in faba bean by exogenous application of salicylic acid and benzothiadiazole. Crop Prot 34:65–69

    Article  CAS  Google Scholar 

  • Singh A, Lim GH, Kachroo P (2017) Transport of chemical signals in systemic acquired resistance. J Integr Plant Biol 59:336–344

    Article  PubMed  CAS  Google Scholar 

  • Sohag AAM, Tahjib-Ul-Arif M, Brestic M, Afrin S, Sakil MA, Hossain MT, Hossain MA (2020) Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. Plant Soil Environ 66:7–13

    Article  Google Scholar 

  • Sood N, Sohal BS, Lore JS (2013) Foliar application of benzothiadiazole and salicylic acid to combat sheath blight disease of rice. Rice Sci 20:349–355

    Article  Google Scholar 

  • Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12:89–100

    Article  PubMed  CAS  Google Scholar 

  • Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Van Pelt JA et al (2003) NPR1 modulates crosstalk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sticher L, MauchMani B, Metraux JP (1997) Systemic acquired resistance. Annu Rev Plant Pathol 35:235–270

    CAS  Google Scholar 

  • Suh JP, Jeung JU, Lee JI, Choi YH, Yea JD, Virk PS, Mackill DJ, Jena KK (2010) Identification and analysis of QTLs controlling cold tolerance at the reproductive stage and validation of effective QTLs in cold-tolerant genotypes of rice (Oryza sativa L.). Theor Appl Genet 120:985–995

    Article  PubMed  CAS  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Muhktar K, Mou Z, Song J et al (2008) Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    Article  PubMed  CAS  Google Scholar 

  • Tamás L, Mistrík I, Alemayehu A, Zelinová V, Bočová B, Huttová J (2015) Salicylic acid alleviates cadmium-induced stress responses through the inhibition of Cd-induced auxin-mediated reactive oxygen species production in barley root tips. J Plant Physiol 173:1–8

    Article  PubMed  CAS  Google Scholar 

  • Tao S, Sun L, Ma C, Li L, Li G, Hao L (2013) Reducing basal salicylic acid enhances Arabidopsis tolerance to lead and cadmium. Plant Soil 372(1–2):309–318

    Article  CAS  Google Scholar 

  • Tasgín E, Atící Ö, Nalbantoğlu B (2003) Effects of salicylic acid and cold on freezing tolerance in winter wheat leaves. Plant Growth Regul 41:231–236

    Article  Google Scholar 

  • Vaca E, Behrens C, Theccanat T, Choe JY, Dean JV (2017) Mechanistic differences in the uptake of salicylic acid glucose conjugates by vacuolar membrane-enriched vesicles isolated from Arabidopsis thaliana. Plant Physiol 161:322–338

    Article  CAS  Google Scholar 

  • Vanacker H, Carver TLW, Foyer CH (2000) Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hypersensitive response in the barley-powdery mildew interaction. Plant Physiol 123:1289–1300

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Viswanath KK, Varakumar P, Pamuru RR, Basha SJ, Mehta S, Rao AD (2020) Plant lipoxygenases and their role in plant physiology. J Plant Biol 63:83–95

    Google Scholar 

  • Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  PubMed  CAS  Google Scholar 

  • Wan SB, Tian L, Tian RR, Pan QH, Zhan JC, Wen PF et al (2009) Involvement of phospholipase D in the low temperature acclimation induced thermotolerance in grape berry. Plant Physiol Biochem 47:504–510

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Liu JH (2012) Exogenous treatment with salicylic acid attenuates occurrence of citrus canker in susceptible navel orange (Citrus sinensis Osbeck). J Plant Physiol 169:1143–1149

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Feng T, Peng X, Yan M, Tang X (2009) Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid. Ecotoxicol Environ Saf 72:1354–1362

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Wang X, Huang M, Cal J, Zhou Q, Dai T, Jiang D (2021) Alleviation of field low-temperature stress in winter wheat by exogenous application of salicylic acid. J Plant Growth Regul 40(2):811–823

    Article  CAS  Google Scholar 

  • Wassie M, Zhang W, Zhang Q, Ji K, Cao L, Chen L (2020) Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa (Medicago sativa L.). Ecotoxicol Environ Saf 191:110206

    Article  PubMed  CAS  Google Scholar 

  • Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Annals of Botany. Ann Bot 111:1021–1058

    Google Scholar 

  • Wendehenne D, Gao QM, Kachroo A, Kachroo P (2014) Free radical-mediated systemic immunity in plants. Curr Opin Plant Biol 20:127–134

    Article  PubMed  CAS  Google Scholar 

  • White RF (1979) Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99:410–412

    Article  PubMed  CAS  Google Scholar 

  • Wise RR, Olson AJ, Schrader SM, Sharkey TD (2004) Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environ 25:717–724

    Article  Google Scholar 

  • Yalpani N, Silverman P, Wilson TM, Kleier DA, Raskin I (1991) Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell 3:809–818

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yokoo S, Inoue S, Suzuki N, Amakawa N, Matsui H, Nakagami H, Takahashi A, Arai R, Katou S (2018) Comparative analysis of plant isochorismate synthases reveals structural mechanisms underlying their distinct biochemical properties. Biosci Rep 38:1–13

    Article  CAS  Google Scholar 

  • Yu XM, Griffith M, Wiseman SB (2001) Ethylene induces antifreeze activity in winter rye leaves. Plant Physiol 126:1232–1240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaid A, Mohammad F, Wani SH, Siddique KM (2019) Salicylic acid enhances nickel stress tolerance by up-regulating antioxidant defense and glyoxalase systems in mustard plants. Ecotoxicol Environ Saf 180:575–587

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Goritschnig S, Dong X, Li X (2003) A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15:2636–2646

    Google Scholar 

  • Zhang Y, Li X (2019) Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Curr Opin Plant Biol 50:29–36

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Liu CJ (2015) Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Mol Plant 8:17–27

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Lan M, Han X, Wu J, Wang-Pruski G (2019) Response of ornamental pepper to high-temperature stress and role of exogenous salicylic acid in mitigating high temperature. J Plant Growth Regul 39:133–146

    Article  CAS  Google Scholar 

  • Zhou ZS, Guo K, Elbaz AA, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65:27–34

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahil et al. (2021). Salicylic Acid for Vigorous Plant Growth and Enhanced Yield Under Harsh Environment. In: Husen, A. (eds) Plant Performance Under Environmental Stress . Springer, Cham. https://doi.org/10.1007/978-3-030-78521-5_5

Download citation

Publish with us

Policies and ethics