Skip to main content

Dimensional-Nanopatterned Piezoresistive Silicon Microcantilever for Environmental Sensing

  • Chapter
  • First Online:
Advanced MEMS/NEMS Fabrication and Sensors

Abstract

Microcantilevers are the most simplified microelectromechanical system (MEMS)-based devices. Resonant piezoresistive silicon microcantilevers (PMCs) coated with sensitive materials, especially the PMCs patterned with sensing nanostructures of large surface area which work as analytical systems, offer great opportunity for the development and mass production of extremely sensitive sensors for real-time in situ detecting of many chemical and explosive gases, at room temperature. In this chapter, we introduce the figure of merit of PMC-based gas sensors, regarding their operation modes, signal transduction methods, and online tracking techniques. The dimensional nanopatterning of PMCs using different strategies, such as bottom-up methods, top-down methods, and the combination of both, is further and extensively presented and discussed. Examples of recent gas sensor applications using PMCs which are fabricated with nanopatterning on the basis of these aforementioned techniques are given in detail.

(Some figures in this article are in color only in the electronic version).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdolvand, R., Bahreyni, B., Lee, J. E. Y., & Nabki, F. (2016). Micromachined resonators: A review. Micromachines, 7, 160.

    Article  Google Scholar 

  • Balasubramanian, S., Polaki, S. R., & Prabakar, K. (2020). Ultrahigh sensitive and ultrafast relative humidity sensing using surface enhanced microcantilevers. Smart Materials and Structures, 29, 095006. https://doi.org/10.1088/1361-665x/ab9f1a

    Article  Google Scholar 

  • Bargatin, I., Kozinsky, I., & Roukes, M. L. (2007). Efficient electrothermal actuation of multiple modes of high-frequency nanoelectromechanical resonators. Applied Physics Letters, 90, 88–91.

    Article  Google Scholar 

  • Battiston, F. M., Ramseyer, J., Lang, H. P., Baller, M. K., & Gerber, C. (2001). A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout. Sensors and Actuators B: Chemical, 77, 122–131.

    Article  Google Scholar 

  • Bauer, J., et al. (2007). Electrical properties of nominally undoped silicon nanowires grown by molecular-beam epitaxy. Applied Physics Letters, 90, 10–13.

    Article  Google Scholar 

  • Beardslee, L. A., et al. (2011). Selectivity enhancement strategy for cantilever-based gas-phase VOC sensors through use of peptide-functionalized carbon nanotubes. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) (pp. 964–967). IEEE. https://doi.org/10.1109/MEMSYS.2011.5734587

    Chapter  Google Scholar 

  • Bertke, M., et al. (2017). Analysis of asymmetric resonance response of thermally excited silicon micro-cantilevers for mass-sensitive nanoparticle detection. Journal of Micromechanics and Microengineering, 27, 064001.

    Article  Google Scholar 

  • Bertke, M., et al. (2018). Contact resonance spectroscopy for on-the-machine manufactory monitoring. Sensors and Actuators, A: Physical, 279, 501–508.

    Article  Google Scholar 

  • Bertke, M., et al. (2020). Fabrication of a microcantilever-based aerosol detector with integrated electrostatic on-chip ultrafine particle separation and collection. Journal of Micromechanics and Microengineering, 30, 014001.

    Article  Google Scholar 

  • Bertke, M., et al. (2021). Ultrafine Aerosol Particle Sizer Based on Piezoresistive Microcantilever Resonators with Integrated Air-Flow Channel. Sensors, 21(3731), 19. https://doi.org/10.3390/s21113731.

  • Biapo, U., et al. (2019). Functionalized TiO2 nanorods on a microcantilever for the detection of organophosphorus chemical agents in air. ACS Applied Materials & Interfaces, 11, 35122–35131.

    Article  Google Scholar 

  • Boisen, A., Thaysen, J., Jensenius, H., & Hansen, O. (2000). Environmental sensors based on micromachined cantilevers with integrated read-out. Ultramicroscopy, 82, 11–16.

    Article  Google Scholar 

  • Boisen, A., Dohn, S., Keller, S. S., Schmid, S., & Tenje, M. (2011). Cantilever-like micromechanical sensors. Reports on Progress in Physics, 74, 036101.

    Article  Google Scholar 

  • Brand, O., Dufour, I., Heinrich, S., & Josse, F. (2015). Resonant MEMS—Fundamentals, implementation and application. Wiley.

    Book  Google Scholar 

  • Cai, S., et al. (2019). In situ construction of metal-organic framework (MOF) UiO-66 film on Parylene-patterned resonant microcantilever for trace organophosphorus molecules detection. Analyst, 144, 3729–3735.

    Article  Google Scholar 

  • Chang, S. W., Chuang, V. P., Boles, S. T., Ross, C. A., & Thompson, C. V. (2009). Densely packed arrays of ultra-high-aspect-ratio silicon nanowires fabricated using block-copolymer lithography and metal-assisted etching. Advanced Functional Materials, 19, 2495–2500.

    Article  Google Scholar 

  • Chaste, J., et al. (2012). A nanomechanical mass sensor with yoctogram resolution. Nature Nanotechnology, 7, 301–304.

    Article  Google Scholar 

  • Chen, Y. (2015). Nanofabrication by electron beam lithography and its applications: A review. Microelectronic Engineering, 135, 57–72.

    Article  Google Scholar 

  • Chen, Z., & Lu, C. (2005). Humidity sensors: A review of materials and mechanisms. Sensor Letters, 3, 274–295.

    Article  Google Scholar 

  • de Boor, J., Gösele, U., Huang, Z., Geyer, N., & Werner, P. (2010). Metal-assisted chemical etching of silicon: A review. Advanced Materials, 23, 285–308.

    Google Scholar 

  • Debeda, H., & Dufour, I. (2020). Resonant microcantilever devices for gas sensing. In Advanced nanomaterials for inexpensive gas microsensors (pp. 161–187). https://doi.org/10.1016/B978-0-12-814827-3.00009-8

    Chapter  Google Scholar 

  • Dufour, I., Lochon, F., & Josse, F. (2007). Effect of coating viscoelasticity on quality factor and limit of detection of microcantilever chemical sensors. IEEE Sensors Journal, 7, 230–236.

    Article  Google Scholar 

  • Fantner, G. E., Odermatt, P. D., & Eskandarian, H. A. (2017). Applications of MEMS to cell biology. In B. Bhushan (Ed.), Springer handbook of nanotechnology (pp. 587–616). Springer. https://doi.org/10.1007/978-3-662-54357-3_19

    Chapter  Google Scholar 

  • Farahani, H., Wagiran, R., & Hamidon, M. N. (2014). Humidity sensors principle, mechanism, and fabrication technologies: A comprehensive review. Sensors, 14, 7881–7939.

    Article  Google Scholar 

  • Fenner, R., & Zdankiewicz, E. (2001). Micromachined water vapor sensors: A review of sensing technologies. IEEE Sensors Journal, 1, 309–317.

    Article  Google Scholar 

  • Fuhrmann, B., et al. (2005). Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. Nano Letters, 5, 2524–2527.

    Article  Google Scholar 

  • Geisse, N. A. (2009). AFM and combined optical techniques. Materials Today, 12, 40–45.

    Article  Google Scholar 

  • Goeders, K. M., Colton, J. S., & Bottomley, L. A. (2008). Microcantilevers: Sensing chemical interactions via mechanical motion. Chemical Reviews, 108, 522–542.

    Article  Google Scholar 

  • Hamdana G., et al. (2017). Towards fabrication of 3D isotopically modulated vertical silicon nanowires in selective areas by nanosphere lithography. Microelectronic Engineering, 179, 74–82. http://dx.doi.org/10.1016/j.mee.2017.04.030.

  • Hamdana, G., et al. (2018). Nanoindentation of crystalline silicon pillars fabricated by soft UV nanoimprint lithography and cryogenic deep reactive ion etching. Sensors and Actuators A: Physical, 283, 65–78.

    Article  Google Scholar 

  • Haynes, C. L., & Van Duyne, R. P. (2001). Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. The Journal of Physical Chemistry. B, 105, 5599–5611.

    Article  Google Scholar 

  • Huang, J., Chiam, S. Y., Tan, H. H., Wang, S., & Chim, W. K. (2010). Fabrication of silicon nanowires with precise diameter control using metal nanodot arrays as a hard mask blocking material in chemical etching. Chemistry of Materials, 22, 4111–4116.

    Article  Google Scholar 

  • Huang, J. Q., Li, F., Zhao, M., & Wang, K. (2015). A surface micromachined CMOS MEMS humidity sensor. Micromachines, 6, 1569–1576.

    Article  Google Scholar 

  • Jensenius, H., et al. (2000). A microcantilever-based alcohol vapor sensor-application and response model. Applied Physics Letters, 76, 2615–2617.

    Article  Google Scholar 

  • Ji, D., Li, T., & Fuchs, H. (2017). Nanosphere lithography for Sub-10-nm nanogap electrodes. Advanced Electronic Materials, 3, 1–5.

    Google Scholar 

  • Johnson, B. N., & Mutharasan, R. (2012). Biosensing using dynamic-mode cantilever sensors: A review. Biosensors & Bioelectronics, 32, 1–18.

    Article  Google Scholar 

  • Kang, T. J., et al. (2005). Low-thermal-budget and selective relaxation of stress gradients in gold micro-cantilever beams using ion implantation. Journal of Micromechanics and Microengineering, 15, 2469–2478.

    Article  Google Scholar 

  • Kanungo, P. D., et al. (2008). Controlled in situ boron doping of short silicon nanowires grown by molecular beam epitaxy. Applied Physics Letters, 92, 263107.

    Article  Google Scholar 

  • Kilinc, N., et al. (2014). Fabrication of 1D ZnO nanostructures on MEMS cantilever for VOC sensor application. Sensors and Actuators B: Chemical, 202, 357–364.

    Article  Google Scholar 

  • Kim, J. H., Hong, S. M., Moon, B. M., & Kim, K. (2010). High-performance capacitive humidity sensor with novel electrode and polyimide layer based on MEMS technology. Microsystem Technologies, 16, 2017–2021.

    Article  Google Scholar 

  • Lang, H. P., Gerber, C., et al. (1998). A chemical sensor based on amicromechanical cantilever array for the identification of gases and vapors. Applied Physics A, 66, S61–S64.

    Google Scholar 

  • Lavrik, N. V., Sepaniak, M. J., Datskos, P. G., & Lavrik, N. V. (2004). Cantilever transducers as a platform for chemical and biological sensors. The Review of Scientific Instruments, 2229, 2229–2253.

    Article  Google Scholar 

  • Lee, C.-Y., & Lee, G.-B. (2005). Humidity sensors: A review. Sensor Letters, 3, 1–15.

    Article  Google Scholar 

  • Lee, B., et al. (2017). Magnetoelectric versus thermal actuation characteristics of shear force AFM probes with piezoresistive detection. Measurement Science and Technology, 28, 034011.

    Article  Google Scholar 

  • Li, L., et al. (2017). Controlling the geometries of Si nanowires through tunable nanosphere lithography. ACS Applied Materials & Interfaces, 9, 7368–7375.

    Article  Google Scholar 

  • Liu, M., et al. (2018). Revealing humidity-enhanced NH3 sensing effect by using resonant microcantilever. Sensors and Actuators B: Chemical, 257, 488–495.

    Article  Google Scholar 

  • Lv, Y., Xu, P., Yu, H., Xu, J., & Li, X. (2018). Ni-MOF-74 as sensing material for resonant-gravimetric detection of ppb-level CO. Sensors and Actuators B: Chemical, 262, 562–569.

    Article  Google Scholar 

  • Ma, R.-H., Lee, C.-Y., Wang, Y.-H., & Chen, H.-J. (2008). Microcantilever-based weather station for temperature, humidity and flow rate measurement. Microsystem Technologies Nanosystems and Storage Processing Systems, 14, 971–977.

    Article  Google Scholar 

  • Manzaneque, T., et al. (2014). Piezoelectric MEMS resonator-based oscillator for density and viscosity sensing. Sensors and Actuators, A: Physical, 220, 305–315.

    Article  Google Scholar 

  • Meyer, G., & Amer, N. M. (1988). Novel optical approach to atomic force microscopy. Applied Physics Letters, 53, 2400–2402.

    Article  Google Scholar 

  • Morales, A. M. (2008). A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science (80- ), 208.

    Google Scholar 

  • Oden, P. I., Chen, G. Y., Steele, R. A., Warmack, R. J., & Thundat, T. (1996). Viscous drag measurements utilizing microfabricated cantilevers. Applied Physics Letters, 68, 3814–3816.

    Article  Google Scholar 

  • Okan, M., Sari, E., & Duman, M. (2017). Molecularly imprinted polymer based micromechanical cantilever sensor system for the selective determination of ciprofloxacin. Biosensors & Bioelectronics, 88, 258–264.

    Article  Google Scholar 

  • Pandit, M., Zhao, C., Sobreviela, G., Mustafazade, A., & Seshia, A. A. (2017). Reduction of amplitude ratio dependence on drive level in mode localized resonant MEMS sensors. In Sensors, 2017 IEEE (pp. 1–3). IEEE.

    Google Scholar 

  • Park, I., Han, H.-J., Jung, Y. S., Cho, M., & Gao, M. (2018). Hydrogen sensors: Palladium-decorated silicon nanomesh fabricated by nanosphere lithography for high performance, room temperature hydrogen sensing (small 10/2018). Small, 14, 1870041.

    Article  Google Scholar 

  • Possas-Abreu, M., et al. (2017). Development of diamond and silicon MEMS sensor arrays with integrated readout for vapor detection. Sensors (Switzerland), 17, 1–15.

    Article  Google Scholar 

  • Rodriguez, B. J., Callahan, C., Kalinin, S. V., & Proksch, R. (2007). Dual-frequency resonance-tracking atomic force microscopy. Nanotechnology, 18, 475504.

    Article  Google Scholar 

  • Schlur, L., Calado, J. R., & Spitzer, D. (2018a). Synthesis of zinc oxide nanorods or nanotubes on one side of a microcantilever. Royal Society of Chemistry, 5, 180510.

    Google Scholar 

  • Schlur, L., et al. (2018b). Cu(OH)2 and CuO nanorod synthesis on piezoresistive cantilevers for the selective detection of nitrogen dioxide. Sensors (Switzerland), 18, 1108.

    Article  Google Scholar 

  • Schlur, L., Agostini, P., Thomas, G., Gerer, G., Grau, J., & Spitzer, D. (2020). Detection of organophosphorous chemical agents with CuO-nanorod-modified microcantilevers. Sensors (Switzerland), 20, 1061.

    Article  Google Scholar 

  • Schmidt, V., Senz, S., & Gösele, U. (2005). Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Letters, 5, 931–935.

    Article  Google Scholar 

  • Seo, J. H., & Brand, O. (2008). High Q-factor in-plane-mode resonant microsensor platform for gaseous/ liquid environment. Journal of Microelectromechanical Systems, 17, 483–493.

    Article  Google Scholar 

  • Su, S., Lin, L., Li, Z., Feng, J., & Zhang, Z. (2013). The fabrication of large-scale sub-10-nm core-shell silicon nanowire arrays. Nanoscale Research Letters, 8, 1–7.

    Article  Google Scholar 

  • Tang, L., Xu, P., Li, M., Yu, H., & Li, X. (2020). H2S gas sensor based on integrated resonant dual-microcantilevers with high sensitivity and identification capability. Chinese Chemical Letters, 31, 2155–2158.

    Article  Google Scholar 

  • Thaysen, J., Boisen, A., Hansen, O., & Bouwstra, S. (2000). Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical Wheatstone bridge arrangement. Sensors and Actuators, A: Physical, 83, 47–53.

    Article  Google Scholar 

  • Thomas, G., et al. (2020). Double side nanostructuring of microcantilever sensors with TiO2-NTs as a route to enhance their sensitivity. Nanoscale, 12, 13338–13345.

    Article  Google Scholar 

  • Tortonese, M., Yamada, H., Barrett, R. C., & Quate, C. F. (1991). Atomic force microscopy using a piezoresistive cantilever. In TRANSDUCERS ‘91: 1991 International conference on solid-state sensors and actuators. Digest of Technical Papers (pp. 448–451).

    Chapter  Google Scholar 

  • Vashist, S. K., Luong, J. H. T., Vashist, S. K., Chaudhary, M., & Gupta, A. (2018). Microcantilever-based sensors. In J. L. Sandeep Vashist (Ed.), Handbook of immunoassay technologies (Vol. 59, pp. 305–332). Elsevier.

    Chapter  Google Scholar 

  • Wang, Y., Park, S., Yeow, J. T. W. W., Langner, A., & Müller, F. (2010). A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating. Sensors and Actuators B: Chemical, 149, 136–142.

    Article  Google Scholar 

  • Wasisto, H. S., et al. (2013). Portable cantilever-based airborne nanoparticle detector. Sensors and Actuators B: Chemical, 187, 118–127.

    Article  Google Scholar 

  • Wasisto, H. S., et al. (2014). A phase—locked loop frequency tracking system for portable microelectromechanical piezoresistive cantilever mass sensors. Microsystem Technologies, 20, 559–569.

    Article  Google Scholar 

  • Xu, J., et al. (2017a). Fabrication of ZnO nanorods on MEMS Piezoresistive silicon microcantilevers for environmental monitoring. Proceedings, 1, 290.

    Google Scholar 

  • Xu, X., et al. (2017b). Multiple-patterning Nanosphere lithography for fabricating periodic three-dimensional hierarchical nanostructures. ACS Nano, 11, 10384–10391.

    Article  Google Scholar 

  • Xu, J., et al. (2018a). Fabrication of ZnO nanorods and chitosan@ZnO nanorods on MEMS piezoresistive self-actuating silicon microcantilever for humidity sensing. Sensors and Actuators B: Chemical, 273, 276–287.

    Article  Google Scholar 

  • Xu, J., et al. (2018b). Area-selective growth of aligned ZnO nanorod arrays for MEMS device applications. Proceedings, 2, 887.

    Google Scholar 

  • Xu, J., Bertke, M., Wasisto, H. S., & Peiner, E. (2019). Piezoresistive microcantilevers for humidity sensing. Journal of Micromechanics and Microengineering, 29, 053003.

    Article  Google Scholar 

  • Xu, J., et al. (2019b). Silicon nanopillars with ZnO nanorods by nanosphere lithography on a piezoresistive microcantilever. In 2019 20th International Conference on Solid-State Sensors, Actuators Microsystems Eurosensors XXXIII (TRANSDUCERS EUROSENSORS XXXIII) (pp. 2420–2423).

    Chapter  Google Scholar 

  • Xu, J., et al. (2019c). Piezoresistive microcantilevers 3D-patterned using ZnO-nanorods@silicon-nanopillars for room-temperature ethanol detection. In 2019 20th International Conference on Solid-State Sensors, Actuators Microsystems Eurosensors XXXIII (TRANSDUCERS EUROSENSORS XXXIII) (pp. 1211–1214).

    Chapter  Google Scholar 

  • Xu, J., Setiono, A., & Peiner, E. (2020). Piezoresistive microcantilever with SAM-modified ZnO-nanorods@silicon-nanopillars for room-temperature parts-per-billion NO2 detection. ACS Applied Nano Materials, 3, 6609–6620.

    Article  Google Scholar 

  • Yang, Y., et al. (2015). Experimental investigation on mode coupling of bulk mode silicon MEMS resonators. In Micro Electro Mechanical Systems (MEMS), 2015 28th IEEE International Conference on 1008–1011. IEEE.

    Google Scholar 

Download references

Acknowledgements

This project has received funding from the EMPIR program co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation program under No. 19ENG05 Nanowires.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin Peiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xu, J., Peiner, E. (2022). Dimensional-Nanopatterned Piezoresistive Silicon Microcantilever for Environmental Sensing. In: Yang, Z. (eds) Advanced MEMS/NEMS Fabrication and Sensors. Springer, Cham. https://doi.org/10.1007/978-3-030-79749-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79749-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79748-5

  • Online ISBN: 978-3-030-79749-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics