Skip to main content

Archetypal Model of Entropy by Poisson Cohomology as Invariant Casimir Function in Coadjoint Representation and Geometric Fourier Heat Equation

  • Conference paper
  • First Online:
Geometric Science of Information (GSI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12829))

Included in the following conference series:

Abstract

In 1969, Jean-Marie Souriau introduced a “Lie Groups Thermodynamics” in the framework of Symplectic model of Statistical Mechanics. Based on this model, we will introduce a geometric characterization of Entropy as a generalized Casimir invariant function in coadjoint representation, where Souriau cocycle is a measure of the lack of equivariance of the moment mapping. The dual space of the Lie algebra foliates into coadjoint orbits that are also the level sets on the entropy that could be interpreted in the framework of Thermodynamics by the fact that motion remaining on these surfaces is non-dissipative, whereas motion transversal to these surfaces is dissipative. We will also explain the 2nd Principle in thermodynamics by definite positiveness of Souriau tensor extending the Koszul-Fisher metric from Information Geometry, and introduce a new geometric Fourier heat equation with Souriau-Koszul-Fisher tensor. In conclusion, Entropy as Casimir function is characterized by Koszul Poisson Cohomology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Casimir, H.G.B.: Uber die konstruktion einer zu den irreduziblen darstellungen halbeinfacher kontinuierlicher gruppen gehörigen differentialgleichung. Proc. R. Soc. Amsterdam 30, 4 (1931)

    MATH  Google Scholar 

  2. Souriau, J.-M.: Structure des systèmes dynamiques. Dunod (1969)

    Google Scholar 

  3. Souriau, J.-M.: Structure of Dynamical Systems: A Symplectic View of Physics. The Progress in Mathematics Book Series, vol. 149. Springer, Boston (1997). https://doi.org/10.1007/978-1-4612-0281-3

    Book  Google Scholar 

  4. Souriau, J.-M.: Mécanique statistique, groupes de Lie et cosmologie. Colloque International du CNRS “Géométrie symplectique et physique Mathématique”, Aix-en-Provence (1974)

    Google Scholar 

  5. Souriau, J.-M.: Géométrie Symplectique et Physique Mathématique. In: Deux Conférences de Jean-Marie Souriau, Colloquium de la SMF, 19 Février 1975 - 12 Novembre 1975

    Google Scholar 

  6. Souriau, J.-M.: Mécanique Classique et Géométrie Symplectique, CNRS-CPT-84/PE-1695, November 1984

    Google Scholar 

  7. Souriau, J.-M.: Définition covariante des équilibres thermodynamiques. Supplemento al Nuovo cimento IV(1), 203–216 (1966)

    Google Scholar 

  8. Souriau, J.-M.: Thermodynamique et Geometrie. In: Bleuler, K., Reetz, A., Petry, H.R. (eds.) Differential Geometrical Methods in Mathematical Physics II, pp. 369–397. Springer, Heidelberg (1978). https://doi.org/10.1007/BFb0063682

    Chapter  Google Scholar 

  9. Barbaresco, F.: Lie group statistics and Lie group machine learning based on Souriau Lie groups thermodynamics & Koszul-Souriau-fisher metric: new entropy definition as generalized casimir invariant function in coadjoint representation. Entropy 22, 642 (2020)

    Article  MathSciNet  Google Scholar 

  10. Barbaresco, F.: Lie groups thermodynamics & Souriau-Fisher Metric. In: SOURIAU 2019 Conference. Institut Henri Poincaré, 31st May 2019

    Google Scholar 

  11. Barbaresco, F.: Souriau-Casimir Lie groups thermodynamics & machine learning. In: Les Houches SPIGL 2020 Proceedings. Springer Proceedings in Mathematics & Statistics (2021)

    Google Scholar 

  12. Barbaresco, F.: Jean-Marie Souriau’s symplectic model of statistical physics: seminal papers on Lie groups thermodynamics - Quod Erat demonstrandum. In: Les Houches SPIGL 2020 Proceedings. Springer Proceedings in Mathematics & Statistics (2021)

    Google Scholar 

  13. Barbaresco, F.: Koszul lecture related to geometric and analytic mechanics, Souriau’s Lie group thermodynamics and information geometry. Inf. Geom. (2021). https://doi.org/10.1007/s41884-020-00039-x

  14. Marle, C.-M.: From tools in symplectic and poisson geometry to J.-M. Souriau’s theories of statistical mechanics and thermodynamics. Entropy 18, 370 (2016)

    Article  Google Scholar 

  15. Marle, C.-M.: Projection Stéréographique et Moments, Hal-02157930, Version 1, June 2019

    Google Scholar 

  16. Marle, C.-M.: On Gibbs states of mechanical systems with symmetries. JGSP 57, 45–85 (2020)

    Article  MathSciNet  Google Scholar 

  17. Koszul, J.-L.: Introduction to Symplectic Geometry. Springer, Heidelberg (2019). https://doi.org/10.1007/978-981-13-3987-5

    Book  MATH  Google Scholar 

  18. Cartier, P.: Some fundamental techniques in the theory of integrable systems, IHES/M/94/23, SW9421 (1994)

    Google Scholar 

  19. Stratonovich, R.L.: On Distributions in representation space. Soviet Phys. JETP 4(6), 891–898 (1957)

    MathSciNet  MATH  Google Scholar 

  20. De Saxcé, G., Vallée, C.: Galilean Mechanics and Thermodynamics of Continua (2016)

    Google Scholar 

  21. Mikami, K.: Local Lie algebra structure and momentum mapping. J. Math. Soc. Jpn. 39(2), 233–246 (1987)

    Article  MathSciNet  Google Scholar 

  22. Engo, K., Faltinsen, S.: Numerical integration of Lie-Poisson systems while preserving coadjoint orbits and energy. SIAM J. Numer. Anal. 39(1), 128–145 (2002)

    Article  MathSciNet  Google Scholar 

  23. Poincaré, H.: Sur une forme nouvelle des équations de la Mécanique. Compte-rendus des séances de l’Académie des Sciences, pp. 48–51, lundi 18 Février 1901

    Google Scholar 

  24. Balian, R.: Introduction à la thermodynamique hors-équilibre. CEA report (2003)

    Google Scholar 

  25. Berezin, F.A.: Some remarks about the associated envelope of a Lie algebra. Funct. Anal. Appl. 1(2), 91–102 (1968). https://doi.org/10.1007/BF01076082

    Article  MATH  Google Scholar 

  26. Lichnerowicz, A.: Les variétés de Poisson et leurs algèbres de Lie associées. J. Differ. Geom. 12, 253–300 (1977)

    Article  Google Scholar 

  27. Koszul, J.L.: Crochet de Schouten-Nijenhuis et cohomologie. Astérisque, numéro hors-série Élie Cartan et les mathématiques d'aujourd'hui, Lyon, 25–29 juin 1984, pp. 257–271 (1985)

    Google Scholar 

  28. Cartan, E.: Sur les invariants intégraux de certains espaces homogènes clos et les propriétés topologiques de ces espaces. Ann. Soc. Pol. Math. 8, 181–225 (1929)

    MATH  Google Scholar 

  29. Marle, C.-M.: The Schouten-Nijenhuis bracket and interior products. J. Geom. Phys. 23(3–4), 350–359 (1997)

    Article  MathSciNet  Google Scholar 

  30. Vorob’ev, Y.M., Karasev, M.V.: Poisson manifolds and the Schouten bracket. Funktsional. Anal. i Prilozhen. 22(1), 1–11, 96 (1988)

    Google Scholar 

  31. Vialatte, A.: Les gloires silencieuses: Elie Cartan, Journalismes, Le Petit Dauphinois 1932–1944, Cahiers Alexandre Vialatte n°36, pp. 150–160 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Barbaresco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barbaresco, F. (2021). Archetypal Model of Entropy by Poisson Cohomology as Invariant Casimir Function in Coadjoint Representation and Geometric Fourier Heat Equation. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2021. Lecture Notes in Computer Science(), vol 12829. Springer, Cham. https://doi.org/10.1007/978-3-030-80209-7_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80209-7_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80208-0

  • Online ISBN: 978-3-030-80209-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics