Skip to main content

Reproducibility of Retinal Vascular Phenotypes Obtained with Optical Coherence Tomography Angiography: Importance of Vessel Segmentation

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2021)

Abstract

Optical coherence tomography angiography (OCTA) is a non-invasive imaging method that can visualize the finest vascular networks in the human retina. OCTA image analysis has been successfully applied to the investigation of retinal vascular diseases of the eye and other systemic conditions that may manifest in the eye. To characterize and distinguish OCTA images from different pathologies, it is important to identify quantitative metrics and phenotypes that have high reproducibility and are not overly susceptible to the effects of imaging artifacts. This paper demonstrates the reproducibility of several recently demonstrated candidate OCTA quantitative metrics: mean curvature and tortuosity of the whole, foveal, superior, nasal, inferior, and temporal regions; foveal and parafoveal vessel skeleton density; and finally, foveal avascular zone area and acircularity index. This paper also highlights the importance of vessel segmentation choice on reproducibility using two different segmentation methods: optimally oriented flux and Frangi filter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bulut, M., et al.: Evaluation of optical coherence tomography angiographic findings in Alzheimer’s type dementia. Br. J. Ophthalmol. 102(2), 233–237 (2018). https://doi.org/10.1136/bjophthalmol-2017-310476

    Article  Google Scholar 

  2. Corvi, F., Pellegrini, M., Erba, S., Cozzi, M., Staurenghi, G., Giani, A.: Reproducibility of vessel density, fractal dimension, and foveal avascular zone using 7 different optical coherence tomography angiography devices. Br. J. Ophthalmol. 186, 25–31 (2018)

    Google Scholar 

  3. Decencière, E., et al.: Feedback on a publicly distributed image database: the messidor database. Image Anal. Stereology 33(3), 231–234 (2014)

    Article  Google Scholar 

  4. Giarratano, Y., et al.: Automated segmentation of optical coherence tomography angiography images: benchmark data and clinically relevant metrics. Transl. Vis. Sci. Technol. 9(13), 5 (2020)

    Article  Google Scholar 

  5. Giarratano, Y., et al.: A framework for the discovery of retinal biomarkers in optical coherence tomography angiography (OCTA). In: Fu, H., Garvin, M.K., MacGillivray, T., Xu, Y., Zheng, Y. (eds.) OMIA 2020. LNCS, vol. 12069, pp. 155–164. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63419-3_16

    Chapter  Google Scholar 

  6. Hagag, A.M., Gao, S.S., Jia, Y., Huang, D.: Optical coherence tomography angiography: technical principles and clinical applications in ophthalmology. Taiwan J. Ophthalmol. 7(3), 115 (2017)

    Article  Google Scholar 

  7. Hart, W.E., Goldbaum, M., Côté, B., Kube, P., Nelson, M.R.: Measurement and classification of retinal vascular tortuosity. Int. J. Med. Informatics 53(2–3), 239–252 (1999). https://doi.org/10.1016/S1386-5056(98)00163-4

    Article  Google Scholar 

  8. Kim, A.Y., Chu, Z., Shahidzadeh, A., Wang, R.K., Puliafito, C.A., Kashani, A.H.: Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest. Ophthalmol. Vis. Sci. 57(9), OCT362-OCT370 (2016). https://doi.org/10.1167/iovs.15-18904

  9. Kwon, J., Choi, J., Shin, J.W., Lee, J., Kook, M.S.: Alterations of the foveal avascular zone measured by optical coherence tomography angiography in glaucoma patients with central visual field defects. Invest. Ophthalmol. Vis. Sci. 58(3), 1637–1645 (2017)

    Article  Google Scholar 

  10. La Spina, C., Carnevali, A., Marchese, A., Querques, G., Bandello, F.: Reproducibility and reliability of optical coherence tomography angiography for foveal avascular zone evaluation and measurement in different settings. Retina 37(9), 1636–1641 (2017)

    Article  Google Scholar 

  11. Lavia, C., Couturier, A., Erginay, A., Dupas, B., Tadayoni, R., Gaudric, A.: Reduced vessel density in the superficial and deep plexuses in diabetic retinopathy is associated with structural changes in corresponding retinal layers. PloS ONE 14(7), e0219164 (2019)

    Article  Google Scholar 

  12. Law, M.W.K., Chung, A.C.S.: Three dimensional curvilinear structure detection using optimally oriented flux. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 368–382. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88693-8_27

    Chapter  Google Scholar 

  13. Lei, J., et al.: Repeatability and reproducibility of superficial macular retinal vessel density measurements using optical coherence tomography angiography en face images. JAMA Ophthalmol. 135(10), 1092–1098 (2017). https://doi.org/10.1001/jamaophthalmol.2017.3431

  14. Li, A., You, J., Du, C., Pan, Y.: Automated segmentation and quantification of OCT angiography for tracking angiogenesis progression. Biomed. Opt. Express 8(12), 5604 (2017). https://doi.org/10.1364/boe.8.005604

    Article  Google Scholar 

  15. Li, M., et al.: Ipn-v2 and octa-500: Methodology and dataset for retinal image segmentation. arXiv preprint arXiv:2012.07261 (2020)

  16. Ma, Y., et al.: Rose: a retinal oct-angiography vessel segmentation dataset and new model. IEEE Trans. Med. Imaging 40(3), 928–939 (2021). https://doi.org/10.1109/TMI.2020.3042802

    Article  Google Scholar 

  17. Mookiah, M.R.K., et al.: A review of machine learning methods for retinal blood vessel segmentation and artery/vein classification. Med. Image Anal. 68, 101905 (2020)

    Google Scholar 

  18. Rosenfeld, P.J., et al.: Zeiss angioplex\(^{\rm TM}\) spectral domain optical coherence tomography angiography: technical aspects. OCT Angiography Retinal Macular Dis. 56, 18–29 (2016)

    Article  Google Scholar 

  19. Schneider, S., Sbalzarini, I.F.: Finding faces in a planar embedding of a graph. Technical Report, MOSAIC Group, MPI-CBG (2015)

    Google Scholar 

  20. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  21. Takase, N., Nozaki, M., Kato, A., Ozeki, H., Yoshida, M., Ogura, Y.: Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 35(11), 2377–2383 (2015)

    Article  Google Scholar 

  22. Van De Kreeke, J.A., et al.: Optical coherence tomography angiography in preclinical Alzheimer’s disease. Br. J. Ophthalmol. 157–161 (2019). https://doi.org/10.1136/bjophthalmol-2019-314127

  23. Wagner, S.K., et al.: Insights into systemic disease through retinal imaging-based oculomics. Transl. Vis. Sci. Technol. 9(2), 6 (2020) https://doi.org/10.1167/tvst.9.2.6, https://tvst.arvojournals.org/article.aspx?articleid=2761238

  24. Yoon, S.P., et al.: Retinal microvascular and neurodegenerative changes in alzheimer’s disease and mild cognitive impairment compared with control participants. Ophthalmol. Retina 3(6), 489–499 (2019)

    Article  Google Scholar 

  25. Zhang, M., Hwang, T.S., Dongye, C., Wilson, D.J., Huang, D., Jia, Y.: Automated quantification of nonperfusion in three retinal plexuses using projection-resolved optical coherence tomography angiography in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 57(13), 5101–5106 (2016). https://doi.org/10.1167/iovs.16-19776

    Article  Google Scholar 

Download references

Acknowledgements

DR and YG were supported by two Medical Research Council Precision Medicine Doctoral Training Programme scholarships (MR/N013166/1). MOB is supported by grants from EPSRC (EP/R029598/1, EP/T008806/1), Fondation Leducq (17 CVD 03), the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 801423, and British Heart Foundation/The Alan Turing Institute under a Cardiovascular Data Science Award. TJM and MOB acknowledge the funders of the SCONe project (https://www.ed.ac.uk/ophthalmology/scone). This project was supported in part by the Alzheimer’s Drug Discovery Foundation and the Heed Foundation (SC) and the VitreoRetinal Surgery Foundation (SC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darwon Rashid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rashid, D. et al. (2021). Reproducibility of Retinal Vascular Phenotypes Obtained with Optical Coherence Tomography Angiography: Importance of Vessel Segmentation. In: Papież, B.W., Yaqub, M., Jiao, J., Namburete, A.I.L., Noble, J.A. (eds) Medical Image Understanding and Analysis. MIUA 2021. Lecture Notes in Computer Science(), vol 12722. Springer, Cham. https://doi.org/10.1007/978-3-030-80432-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80432-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80431-2

  • Online ISBN: 978-3-030-80432-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics