Skip to main content

Human Language Comprehension in Aspect Phrase Extraction with Importance Weighting

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12801))

Abstract

In this study, we describe a text processing pipeline that transforms user-generated text into structured data. To do this, we train neural and transformer-based models for aspect-based sentiment analysis. As most research deals with explicit aspects from product or service data, we extract and classify implicit and explicit aspect phrases from German-language physician review texts. Patients often rate on the basis of perceived friendliness or competence. The vocabulary is difficult, the topic sensitive, and the data user-generated. The aspect phrases come with various wordings using insertions and are not noun-based, which makes the presented case equally relevant and reality-based. To find complex, indirect aspect phrases, up-to-date deep learning approaches must be combined with supervised training data. We describe three aspect phrase datasets, one of them new, as well as a newly annotated aspect polarity dataset. Alongside this, we build an algorithm to rate the aspect phrase importance. All in all, we train eight transformers on the new raw data domain, compare 54 neural aspect extraction models and, based on this, create eight aspect polarity models for our pipeline. These models are evaluated by using Precision, Recall, and F-Score measures. Finally, we evaluate our aspect phrase importance measure algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://ratemds.com, accessed: 2020-12-17.

  2. 2.

    https://jameda.de, accessed: 2020-12-17.

  3. 3.

    Jameda: https://jameda.de; Docfinder: https://docfinder.at; Medicosearch: https://medicosearch.ch; accessed 2021-01-11.

  4. 4.

    Translated from German, with the team as the aspect target: “Betreuung/Engagement”, “Freundlichkeit”, “Kompetenz”, and “Telefonerreichbarkeit”.

References

  1. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. ACL 5, 135–146 (2017)

    Google Scholar 

  2. Chinsha, T.C., Shibily, J.: A syntactic approach for aspect based opinion mining. In: Proceedings of the 9th IEEE International Conference on Semantic Computing, pp. 24–31. IEEE (2015)

    Google Scholar 

  3. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20(1), 37–46 (1960)

    Google Scholar 

  4. Conneau, A., et al.: Unsupervised cross-lingual representation learning at scale. In: Proceedings of the 58th Annual Meeting of the ACL, pp. 8440–8451. ACL, Online (2020)

    Google Scholar 

  5. Cordes, M.: Wie bewerten die anderen? Eine übergreifende Analyse von Arztbewertungsportalen in Europa. Master’s thesis, Paderborn University (2018)

    Google Scholar 

  6. De Clercq, O., Lefever, E., Jacobs, G., Carpels, T., Hoste, V.: Towards an integrated pipeline for aspect-based sentiment analysis in various domains. In: Proceedings of the 8th ACL Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 136–142. ACL (2017)

    Google Scholar 

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the ACL: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. ACL (2019)

    Google Scholar 

  8. Kersting, J., Geierhos, M.: Aspect phrase extraction in sentiment analysis with deep learning. In: Proceedings of the 12th International Conference on Agents and Artificial Intelligence: Special Session on Natural Language Processing in Artificial Intelligence, pp. 391–400. SCITEPRESS (2020)

    Google Scholar 

  9. Kersting, J., Geierhos, M.: Neural learning for aspect phrase extraction and classification in sentiment analysis. In: Proceedings of the 33rd International FLAIRS, pp. 282–285. AAAI (2020)

    Google Scholar 

  10. Kersting, J., Geierhos, M.: Towards aspect extraction and classification for opinion mining with deep sequence networks. In: Loukanova, R. (ed.) Natural Language Processing in Artificial Intelligence—NLPinAI 2020. SCI, vol. 939, pp. 163–189. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-63787-3_6

    Chapter  Google Scholar 

  11. Krippendorff, K.: Computing Krippendorff’s Alpha-Reliability. Technical report 1–25-2011, University of Pennsylvania (2011)

    Google Scholar 

  12. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33(1), 159–174 (1977)

    Google Scholar 

  13. Liu, Y., Bi, J.W., Fan, Z.P.: Ranking products through online reviews: a method based on sentiment analysis technique and intuitionistic fuzzy set theory. Inf. Fusion 36, 149–161 (2017)

    Google Scholar 

  14. López, A., Detz, A., Ratanawongsa, N., Sarkar, U.: What patients say about their doctors online: a qualitative content analysis. J. General Internal Med. 27(6), 685–692 (2012)

    Google Scholar 

  15. Nazir, A., Rao, Y., Wu, L., Sun, L.: Issues and challenges of aspect-based sentiment analysis: a comprehensive survey. IEEE Trans. Affective Comput. 1 (2020). https://doi.org/10.1109/TAFFC.2020.2970399

  16. Nguyen, T.H., Shirai, K.: PhraseRNN: phrase recursive neural network for aspect-based sentiment analysis. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp. 2509–2514. ACL (2015)

    Google Scholar 

  17. Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., Androutsopoulos, I.: SemEval-2016 task 5: aspect based sentiment analysis. In: Proceedings of the 10th International Workshop on Semantic Evaluation, pp. 19–30. ACL (2016)

    Google Scholar 

  18. Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., Androutsopoulos, I.: SemEval-2016 Task 5: Aspect Based Sentiment Analysis (ABSA-16) Annotation Guidelines (2016)

    Google Scholar 

  19. Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., Manandhar, S.: SemEval-2014 task 4: aspect based sentiment analysis. In: Proceedings of the 8th International Workshop on Semantic Evaluation, pp. 27–35. ACL (2014)

    Google Scholar 

  20. Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., Androutsopoulos, I.: SemEval-2015 task 12: aspect based sentiment analysis. In: Proceedings of the 9th International Workshop on Semantic Evaluation, pp. 486–495. ACL (2015)

    Google Scholar 

  21. Sharma, R., Somani, A., Kumar, L., Bhattacharyya, P.: Sentiment intensity ranking among adjectives using sentiment bearing word embeddings. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 547–552. ACL (2017)

    Google Scholar 

  22. Shrestha, M.: Development of a language model for medical domain. Master’s thesis, Rhine-Waal University of Applied Sciences (2021)

    Google Scholar 

  23. Wojatzki, M., Ruppert, E., Holschneider, S., Zesch, T., Biemann, C.: GermEval 2017: shared task on aspect-based sentiment in social media customer feedback. In: Proceedings of the GermEval 2017 - Shared Task on Aspect-based Sentiment in Social Media Customer Feedback, pp. 1–12. Springer (2017)

    Google Scholar 

  24. Zhang, L., Wang, S., Liu, B.: Deep learning for sentiment analysis: a survey. Wiley Interdisc. Rev.: Data Mining Knowl. Discov. 8(4), 1–25 (2018)

    Google Scholar 

  25. Zhou, J., Huang, J.X., Chen, Q., Hu, Q.V., Wang, T., He, L.: Deep learning for aspect-level sentiment classification: survey, vision, and challenges. IEEE Access 7, 78454–78483 (2019)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the German Research Foundation (DFG) within the Collaborative Research Center On-The-Fly Computing (SFB 901). We thank F. S. Bäumer, M. Cordes, and R. R. Mülfarth for their assistance with the data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joschka Kersting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kersting, J., Geierhos, M. (2021). Human Language Comprehension in Aspect Phrase Extraction with Importance Weighting. In: Métais, E., Meziane, F., Horacek, H., Kapetanios, E. (eds) Natural Language Processing and Information Systems. NLDB 2021. Lecture Notes in Computer Science(), vol 12801. Springer, Cham. https://doi.org/10.1007/978-3-030-80599-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80599-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80598-2

  • Online ISBN: 978-3-030-80599-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics