Skip to main content

Abstract

Management of C. burnetii infections, a worlwide zoonotic disease (Q fever), fully aligns with the “one health” concept whereby veterinary and human medicine must be tackled collectively for the prevention of such zoonotic diseases. Molecular epidemiology and surveillance based on methods which can discriminate between strains is an important and somehow mandatory technique when tracing back infections and outbreaks to their source. In Q fever molecular typing and sequencing still presents real challenges, not only in veterinary medicine, but especially in human medicine, and is far beyond becoming a routine diagnostic tool for molecular epidemiology and surveillance. In this chapter we give a short summary and utility of established typing methods, showing efforts to overcome the inherent problems of low target DNA-amounts, and providing insights into current database networks facilitating typing and sequencing information applicable to those from a broad range of stakeholders from researchers, veterinarians, and those working in human medical disciplines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rotz LD, Khan AS, Lillibridge SR, Ostroff SM, Hughes JM (2002) Public health assessment of potential biological terrorism agents. Emerg Infect Dis 8(2):225–230

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hendrix LR, Samuel JE, Mallavia LP (1991) Differentiation of Coxiella burnetii isolates by analysis of restriction-endonuclease-digested DNA separated by SDS-PAGE. J Gen Microbiol 137(2):269–276

    CAS  PubMed  Google Scholar 

  3. Arricau-Bouvery N, Hauck Y, Bejaoui A, Frangoulidis D, Bodier CC, Souriau A et al (2006) Molecular characterization of Coxiella burnetii isolates by infrequent restriction site-PCR and MLVA typing. BMC Microbiol 14

    Google Scholar 

  4. Denison AM, Thompson HA, Massung RF (2007) IS1111 insertion sequences of Coxiella burnetii: characterization and use for repetitive element PCR-based differentiation of Coxiella burnetii isolates. BMC Microbiol 7:91

    Article  PubMed  PubMed Central  Google Scholar 

  5. Frangoulidis D, Splettstoesser WD, Landt O, Dehnhardt J, Henning K, Hilbert A et al (2013) Microevolution of the chromosomal region of acute disease antigen a (adaA) in the query (Q) fever agent Coxiella burnetii. PLoS One 8(1):e53440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frangoulidis D, Walter MC, Antwerpen M, Zimmermann P, Janowetz B, Alex M et al (2014) Molecular analysis of Coxiella burnetii in Germany reveals evolution of unique clonal clusters. Int J Med Microbiol IJMM 304(7):868–876

    Article  CAS  PubMed  Google Scholar 

  7. Glazunova O, Roux V, Freylikman O, Sekeyova Z, Fournous G, Tyczka J et al (2005) Coxiella burnetii genotyping. Emerg Infect Dis 11(8):1211–1217

    Google Scholar 

  8. Jäger C, Willems H, Thiele D, Baljer G (1998) Molecular characterization of Coxiella burnetii isolates. Epidemiol Infect 120(2):157–164

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang G, To H, Russell KE, Hendrix LR, Yamaguchi T, Fukushi H et al (2005) Identification and characterization of an Immunodominant 28-Kilodalton Coxiella burnetii outer membrane protein specific to isolates associated with acute disease. Infect Immun 73(3):1561–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Álvarez-Alonso R, Basterretxea M, Barandika JF, Hurtado A, Idiazabal J, Jado I et al (2018) A Q fever outbreak with a high rate of abortions at a dairy goat farm: Coxiella burnetii shedding, environmental contamination, and viability. In: Dozois CM (ed) Appl Environ Microbiol [Internet]. 84(20). Available from: http://aem.asm.org/lookup/doi/10.1128/AEM.01650-18

    Google Scholar 

  11. Bjork A, Marsden-Haug N, Nett RJ, Kersh GJ, Nicholson W, Gibson D et al (2014) First reported multistate human Q fever outbreak in the United States, 2011. Vector-Borne Zoonotic Dis 14(2):111–117

    Article  PubMed  Google Scholar 

  12. Gilsdorf A, Kroh C, Grimm S, Jensen E, Wagner-Wiening C, Alpers K Large Q fever outbreak due to sheep farming near residential areas, Germany. Epidemiol Infect 136(08) Available from: http://www.journals.cambridge.org/abstract_S0950268807009533

  13. Porten K, Rissland J, Tigges A, Broll S, Hopp W, Lunemann M et al (2006) A super-spreading ewe infects hundreds with Q fever at a farmers’ market in Germany. BMC Infect Dis 6(1) Available from: http://bmcinfectdis.biomedcentral.com/articles/10.1186/1471-2334-6-147

  14. Bae M, Jin CE, Park JH, Kim MJ, Chong YP, Lee S-O et al (2019) Diagnostic usefulness of molecular detection of Coxiella burnetii from blood of patients with suspected acute Q fever. Medicine (Baltimore) 98(23):e15724

    Article  CAS  Google Scholar 

  15. Fournier P-E, Raoult D (2003) Comparison of PCR and serology assays for early diagnosis of acute Q fever. J Clin Microbiol 41(11):5094–5098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hartzell JD, Wood-Morris RN, Martinez LJ, Trotta RF (2008) Q fever: epidemiology, diagnosis, and treatment. Mayo Clin Proc 83(5):574–579

    Article  PubMed  Google Scholar 

  17. Keijmel SP, Krijger E, Delsing CE, Sprong T, Nabuurs-Franssen MH, Bleeker-Rovers CP (2015) Differentiation of acute Q fever from other infections in patients presenting to hospitals, the Netherlands1. Emerg Infect Dis 21(8):1348–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Massung RF, Cutler SJ, Frangoulidis D (2018) Molecular typing of Coxiella burnetii (Q Fever). In: Toman R, Heinzen RA, Samuel JE, Mege J-L (eds) Coxiella burnetii: recent advances and new perspectives in research of the Q fever bacterium [Internet]. Springer, Dordrecht, pp 381–396. Available from: http://www.springerlink.com/index/10.1007/978-94-007-4315-1_19

    Google Scholar 

  19. Gauduchon V, Chalabreysse L, Etienne J, Célard M, Benito Y, Lepidi H et al (2003) Molecular diagnosis of infective endocarditis by PCR amplification and direct sequencing of DNA from valve tissue. J Clin Microbiol 41(2):763–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jang Y-R, Song JS, Jin CE, Ryu B-H, Park SY, Lee S-O et al (2018) Molecular detection of Coxiella burnetii in heart valve tissue from patients with culture-negative infective endocarditis. Medicine (Baltimore) 97(34):e11881

    Article  Google Scholar 

  21. Lepidi H, Houpikian P, Liang Z, Raoult D (2003) Cardiac valves in patients with Q fever endocarditis: microbiological, molecular, and histologic studies. J Infect Dis 187(7):1097–1106

    Article  PubMed  Google Scholar 

  22. Delsing CE, Kullberg BJ, Bleeker-Rovers CP (2010) Q fever in the Netherlands from 2007 to 2010. Neth J Med 68(12):382–387

    CAS  PubMed  Google Scholar 

  23. Roest HIJ, Tilburg JJHC, Hoek WVD, Vellema P, Zijderveld FGV, Klaassen CHW et al (2011) The Q fever epidemic in The Netherlands: history, onset, response and reflection. Epidemiol Infect 139(1):1–12

    Article  CAS  PubMed  Google Scholar 

  24. Roest HIJ, Ruuls RC, Tilburg JJHC, Nabuurs-Franssen MH, Klaassen CHW, Vellema P et al (2011) Molecular epidemiology of Coxiella burnetii from ruminants in Q fever outbreak, the Netherlands. Emerg Infect Dis 17(4):668–675

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fournier PE, Marrie TJ, Raoult D (1998) Diagnosis of Q fever. J Clin Microbiol 36(7):1823–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Boden K, Wolf K, Hermann B, Frangoulidis D (2015) First isolation of Coxiella burnetii from clinical material by cell-free medium (ACCM2). Eur J Clin Microbiol Infect Dis 34(5):1017–1022

    Article  CAS  PubMed  Google Scholar 

  27. Omsland A, Cockrell DC, Howe D, Fischer ER, Virtaneva K, Sturdevant DE et al (2009) Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc Natl Acad Sci 106(11):4430–4434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thiele D, Willems H (1994) Is plasmid based differentiation of Coxiella burnetii in ‘acute’ and ‘chronic’ isolates still valid? Eur J Epidemiol 10(4):427–434

    Article  CAS  PubMed  Google Scholar 

  29. Lautenschläger S, Willems H, Jäger C, Baljer G (2000) Sequencing and characterization of the cryptic plasmid QpRS from Coxiella burnetii. Plasmid 44(1):85–88

    Article  PubMed  Google Scholar 

  30. Valková D, Ksár J (1995) A new plasmid (QpDV) common to Coxiella burnetii isolates associated with acute and chronic Q fever. FEMS Microbiol Lett 125(2–3):275–280

    Article  PubMed  Google Scholar 

  31. Willems H, Ritter M, Jäger C, Thiele D (1997) Plasmid-homologous sequences in the chromosome of plasmidless Coxiella burnetii Scurry Q217. J Bacteriol 179(10):3293–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sekeyová Z, Roux V, Raoult D (1999) Intraspecies diversity of Coxiella burnetii as revealed by com1 and mucZ sequence comparison. FEMS Microbiol Lett 180(1):61–67

    Article  PubMed  Google Scholar 

  33. Zhang G, To H, Yamaguchi T, Fukushi H, Hirai K (1997) Differentiation of Coxiella burnetii by sequence analysis of the gene (com1) encoding a 27-kDa outer membrane protein. Microbiol Immunol 41(11):871–877

    Article  CAS  PubMed  Google Scholar 

  34. Nguyen SV, Hirai K (1999) Differentiation of Coxiella burnetii isolates by sequence determination and PCR-restriction fragment length polymorphism analysis of isocitrate dehydrogenase gene. FEMS Microbiol Lett 180(2):249–254

    Article  CAS  PubMed  Google Scholar 

  35. McLaughlin HP, Cherney B, Hakovirta JR, Priestley RA, Conley A, Carter A et al (2017) Phylogenetic inference of Coxiella burnetii by 16S rRNA gene sequencing. PLoS One 12(12):e0189910

    Article  PubMed  PubMed Central  Google Scholar 

  36. Stein A, Kruszewska D, Gouvernet J, Raoult D (1997) Study of the 16S-23S ribosomal DNA internal spacer of Coxiella burnetii. Eur J Epidemiol 13(4):471–475

    Article  CAS  PubMed  Google Scholar 

  37. Heinzen R, Stiegler GL, Whiting LL, Schmitt SA, Mallavia LP, Frazier ME (1990) Use of pulsed field gel electrophoresis to differentiate Coxiella burnetii strains. Ann N Y Acad Sci 590:504–513

    Article  CAS  PubMed  Google Scholar 

  38. Hendrix LR, Samuel JE, Mallavia LP (1991) Differentiation of Coxiella burnetii isolates by analysis of restriction-endonuclease-digested DNA separated by SDS-PAGE. J Gen Microbiol 137(2):269–276

    CAS  PubMed  Google Scholar 

  39. Thiele D, Willems H, Köpf G, Krauss H (1993) Polymorphism in DNA restriction patterns of Coxiella burnetii isolates investigated by pulsed field gel electrophoresis and image analysis. Eur J Epidemiol 9(4):419–425

    Article  CAS  PubMed  Google Scholar 

  40. Svraka S, Toman R, Skultety L, Slaba K, Homan WL (2006) Establishment of a genotyping scheme for Coxiella burnetii. FEMS Microbiol Lett 254(2):268–274

    Article  CAS  PubMed  Google Scholar 

  41. Klaassen CHW, Nabuurs-Franssen MH, Tilburg JJHC, Hamans MAWM, Horrevorts AM (2009) Multigenotype Q fever outbreak, the Netherlands. Emerg Infect Dis 15(4):613–614

    Article  PubMed  PubMed Central  Google Scholar 

  42. Samuel JE, Frazier ME, Mallavia LP (1985) Correlation of plasmid type and disease caused by Coxiella burnetii. Infect Immun 49:5

    Article  Google Scholar 

  43. Vodkin MH, Williams JC (1988) A heat shock operon in Coxiella burnetii produces a major antigen homologous to a protein in both mycobacteria and Escherichia coli. J Bacteriol 170(3):1227–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Weisburg WG, Dobson ME, Samuel JE, Dasch GA, Mallavia LP, Baca O et al (1989) Phylogenetic diversity of the Rickettsiae. J Bacteriol 171(8):4202–4206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thiele D, Willems H, Haas M, Krauss H (1994) Analysis of the entire nucleotide sequence of the cryptic plasmid QpH1 from Coxiella burnetii. Eur J Epidemiol 10(4):413–420

    Article  CAS  PubMed  Google Scholar 

  46. Seshadri R, Paulsen IT, Eisen JA, Read TD, Nelson KE, Nelson WC et al (2003) Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci 100(9):5455–5460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Seshadri R, Samuel J (2005) Genome analysis of Coxiella burnetii species: insights into pathogenesis and evolution and implications for biodefense. Ann N Y Acad Sci 1063(1):442–450

    Article  PubMed  Google Scholar 

  48. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269(5223):496–512

    Article  CAS  PubMed  Google Scholar 

  49. Beare PA, Unsworth N, Andoh M, Voth DE, Omsland A, Gilk SD et al (2009) Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun 77(2):642–656

    Article  CAS  PubMed  Google Scholar 

  50. Omsland A, Beare PA, Hill J, Cockrell DC, Howe D, Hansen B et al (2011) Isolation from animal tissue and genetic transformation of Coxiella burnetii are facilitated by an improved axenic growth medium. Appl Environ Microbiol 77(11):3720–3725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sanchez SE, Vallejo-Esquerra E, Omsland A (2018) Use of axenic culture tools to study Coxiella burnetii. Curr Protoc Microbiol 50(1):e52

    Article  PubMed  Google Scholar 

  52. Sandoz KM, Beare PA, Cockrell DC, Heinzen RA (2016) Complementation of arginine Auxotrophy for genetic transformation of Coxiella burnetii by use of a defined axenic medium. Appl Environ Microbiol 82(10):3042–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vallejo Esquerra E, Yang H, Sanchez SE, Omsland A (2017) Physicochemical and nutritional requirements for axenic replication suggest physiological basis for Coxiella burnetii niche restriction. Front Cell Infect Microbiol 7. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449765/

  54. Kersh GJ, Oliver LD, Self JS, Fitzpatrick KA, Massung RF (2011) Virulence of pathogenic Coxiella burnetii strains after growth in the absence of host cells. Vector-Borne Zoonotic Dis 11(11):1433–1438

    Article  PubMed  Google Scholar 

  55. Hammerl JA, Mertens K, Sprague LD, Hackert VH, Buijs J, Hoebe CJ et al (2015) First draft genome sequence of a human Coxiella burnetii isolate, originating from the largest Q fever outbreak ever reported, the Netherlands, 2007 to 2010. Genome Announc 3(3):e00445–e00415

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kuley R, Smith HE, Janse I, Harders FL, Baas F, Schijlen E et al (2016) First complete genome sequence of the Dutch veterinary Coxiella burnetiiStrain NL3262, originating from the largest global Q fever outbreak, and draft genome sequence of its epidemiologically linked chronic human isolate NLhu3345937. Genome Announc 4(2):e00245–e00216

    Article  PubMed  PubMed Central  Google Scholar 

  57. Millar JA, Beare PA, Moses AS, Martens CA, Heinzen RA, Raghavan R (2017) Whole-genome sequence of Coxiella burnetii Nine Mile RSA439 (Phase II, Clone 4), a laboratory workhorse strain. Genome Announc 5(23) Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465618/

  58. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138

    Article  CAS  PubMed  Google Scholar 

  59. Clarke J, Wu H-C, Jayasinghe L, Patel A, Reid S, Bayley H (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4(4):265–270

    Article  CAS  PubMed  Google Scholar 

  60. Dean FB, Nelson JR, Giesler TL, Lasken RS (2001) Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 11(6):1095–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P et al (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci U S A 99(8):5261–5266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rodrigue S, Malmstrom RR, Berlin AM, Birren BW, Henn MR, Chisholm SW (2009) Whole genome amplification and de novo assembly of single bacterial cells. Ahmed N (ed). PLoS One 4(9):e6864

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lasken RS, Stockwell TB (2007) Mechanism of chimera formation during the multiple displacement amplification reaction. BMC Biotechnol 7(1):19

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jiao X, Rosenlund M, Hooper SD, Tellgren-Roth C, He L, Fu Y et al (2011) Structural alterations from multiple displacement amplification of a human genome revealed by mate-pair sequencing. PLoS One 6(7):e22250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pugh TJ, Delaney AD, Farnoud N, Flibotte S, Griffith M, Li HI et al (2008) Impact of whole genome amplification on analysis of copy number variants. Nucleic Acids Res 36(13):e80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kumar S, Gangoliya SR, Berri M, Rodolakis A, Alam SI (2013) Whole genome amplification of the obligate intracellular pathogen Coxiella burnetii using multiple displacement amplification. J Microbiol Methods 95(3):368–372

    Article  CAS  PubMed  Google Scholar 

  67. Reis S (2014) Der Einfluss von WGA-Techniken auf das Coxiella-Genom und genotypische Dynamik von Coxiella burnetii in einer isolierten Herde kleiner Wiederkäuer [Internet]. PhD thesis, Ludwig-Maximilians-Universität München. Available from: https://edoc.ub.uni-muenchen.de/16718/

  68. Walter MC, Öhrman C, Myrtennäs K, Sjödin A, Byström M, Larsson P et al (2014) Genome sequence of Coxiella burnetii strain Namibia. Stand Genomic Sci 9:22

    Article  PubMed  PubMed Central  Google Scholar 

  69. Leichty AR, Brisson D (2014) Selective whole genome amplification for resequencing target microbial species from complex natural samples. Genetics 198(2):473–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cocking JH, Deberg M, Schupp J, Sahl J, Wiggins K, Porty A et al (2020) Selective whole genome amplification and sequencing of Coxiella burnetii directly from environmental samples. Genomics 112(2):1872–1878

    Article  CAS  PubMed  Google Scholar 

  71. Kozarewa I, Armisen J, Gardner AF, Slatko BE, Hendrickson CL (2015) Overview of target enrichment strategies. Curr Protoc Mol Biol 112:7.21.1–7.2123

    Article  Google Scholar 

  72. Gilpatrick T, Lee I, Graham JE, Raimondeau E, Bowen R, Heron A et al (2020) Targeted nanopore sequencing with Cas9-guided adapter ligation. Nat Biotechnol 38(4):433–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R et al (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95(6):3140–3145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fasemore AM, Helbich A, Walter MC, Dandekar T, Vergnaud G, Förstner KU et al (2020) CoxBase: an online platform for epidemiological surveillance, visualization, analysis and typing of Coxiella burnetii genomic sequence. bioRxiv:2020.11.29.402362

    Google Scholar 

  75. Hornstra HM, Priestley RA, Georgia SM, Kachur S, Birdsell DN, Hilsabeck R et al (2011) Rapid typing of Coxiella burnetii. PLoS One 6(11):e26201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Frangoulidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frangoulidis, D., Walter, M.C., Fasemore, A.M., Cutler, S.J. (2022). Coxiella burnetii . In: de Filippis, I. (eds) Molecular Typing in Bacterial Infections, Volume II. Springer, Cham. https://doi.org/10.1007/978-3-030-83217-9_12

Download citation

Publish with us

Policies and ethics