Skip to main content

Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles

  • Chapter
  • First Online:
Pharmacokinetics and Pharmacodynamics of Nanoparticulate Drug Delivery Systems

Abstract

Nanoparticles are promising drug delivery for various therapeutic applications. Pharmacokinetics is important to study the in vivo fate of nanoparticles. Biodistribution and clearance are the important parameters of pharmacokinetics to be considered. Impact of various characteristics of polymeric nanoparticles affects biodistribution and clearance of nanoparticles. The chapter focuses on four important characteristics of polymeric nanoparticles affecting their biodistribution and clearance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aird WC. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res. 2007;100(2):158–73. https://doi.org/10.1161/01.RES.0000255691.76142.4a.

    Article  CAS  PubMed  Google Scholar 

  2. Anselmo AC, Kumar S, Gupta V, Pearce AM, Ragusa A, Muzykantov V, Mitragotri S. Exploiting shape, cellular-hitchhiking and antibodies to target nanoparticles to lung endothelium: synergy between physical, chemical and biological approaches. Biomaterials. 2015;68:1–8. https://doi.org/10.1016/j.biomaterials.2015.07.043.

    Article  CAS  PubMed  Google Scholar 

  3. Begines B, Ortiz T, Pérez-Aranda M, Martínez G, Merinero M, Argüelles-Arias F, Alcudia A. Polymeric nanoparticles for drug delivery: recent developments and future prospects. Nanomaterials (Basel). 2020;10(7):1403. https://doi.org/10.3390/nano10071403.

    Article  CAS  Google Scholar 

  4. Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, Brown D, Alkilany AM, Farokhzad OC, Mahmoudi M. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017;46(14):4218–44. https://doi.org/10.1039/c6cs00636a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25. https://doi.org/10.1016/j.addr.2013.11.009.

    Article  CAS  PubMed  Google Scholar 

  6. Bort G, Lux F, Dufort S, Crémillieux Y, Verry C, Tillement O. EPR-mediated tumor targeting using ultrasmall-hybrid nanoparticles: from animal to human with theranostic AGuIX nanoparticles. Theranostics. 2020;10(3):1319–31. https://doi.org/10.7150/thno.37543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bottino DC, Patel M, Kadakia E, Zhou J, Patel C, Neuwirth R, Iartchouk N, Brake R, Venkatakrishnan K, Chakravarty A. Dose optimization for anticancer drug combinations: maximizing therapeutic index via clinical exposure-toxicity/preclinical exposure-efficacy modeling. Clin Cancer Res. 2019;25(22):6633–43. https://doi.org/10.1158/1078-0432.CCR-18-3882.

    Article  CAS  PubMed  Google Scholar 

  8. Canup BS, Song H, Le Ngo V, Meng X, Denning TL, Garg P, Laroui H. CD98 siRNA-loaded nanoparticles decrease hepatic steatosis in mice. Dig Liver Dis. 2017;49(2):188–96. https://doi.org/10.1016/j.dld.2016.11.008.

    Article  CAS  PubMed  Google Scholar 

  9. Chambers E, Mitragotri S. Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J Control Release. 2004;100(1):111–9. https://doi.org/10.1016/j.jconrel.2004.08.005.

    Article  CAS  PubMed  Google Scholar 

  10. Chao Y, Makale M, Karmali PP, Sharikov Y, Tsigelny I, Merkulov S, Kesari S, Wrasidlo W, Ruoslahti E, Simberg D. Recognition of dextran-superparamagnetic iron oxide nanoparticle conjugates (Feridex) via macrophage scavenger receptor charged domains. Bioconjug Chem. 2012;23(5):1003–9. https://doi.org/10.1021/bc200685a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen K, Liao S, Guo S, Zheng X, Wang B, Duan Z, Zhang H, Gong Q, Luo K. Multistimuli-responsive PEGylated polymeric bioconjugate-based nano-aggregate for cancer therapy. Chem Eng J. 2020;391:123543. https://doi.org/10.1016/j.cej.2019.123543.

    Article  CAS  Google Scholar 

  12. Chen S, Zhong Y, Fan W, Xiang J, Wang G, Zhou Q, Wang J, Geng Y, Sun R, Zhang Z, Piao Y, Wang J, Zhuo J, Cong H, Jiang H, Ling J, Li Z, Yang D, Yao X, Xu X, Zhou Z, Tang J, Shen Y. Enhanced tumour penetration and prolonged circulation in blood of polyzwitterion-drug conjugates with cell-membrane affinity. Nat Biomed Eng. 2021;5(9):1019–37. https://doi.org/10.1038/s41551-021-00701-4.

    Article  CAS  PubMed  Google Scholar 

  13. Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin FH, Qoronfleh MW. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res. 2019;23:20. https://doi.org/10.1186/s40824-019-0166-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chithrani BD, Chan WC. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007;7(6):1542–50. https://doi.org/10.1021/nl070363y.

    Article  CAS  PubMed  Google Scholar 

  15. Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6(4):662–8. https://doi.org/10.1021/nl052396o.

    Article  CAS  PubMed  Google Scholar 

  16. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV. Renal clearance of quantum dots. Nat Biotechnol. 2007;25(10):1165–70. https://doi.org/10.1038/nbt1340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cui J, Piotrowski-Daspit AS, Zhang J, Shao M, Bracaglia LG, Utsumi T, Seo YE, DiRito J, Song E, Wu C, Inada A, Tietjen GT, Pober JS, Iwakiri Y, Saltzman WM. Poly(amine-co-ester) nanoparticles for effective Nogo-B knockdown in the liver. J Control Release. 2019;304:259–67. https://doi.org/10.1016/j.jconrel.2019.04.044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Darwish WMA, Bayoumi NA. Gold nanorod-loaded (PLGA-PEG) nanocapsules as near-infrared controlled release model of anticancer therapeutics. Lasers Med Sci. 2020;35(8):1729–40. https://doi.org/10.1007/s10103-020-02964-w.

    Article  PubMed  Google Scholar 

  19. de Freitas CSM, Soares AN. Efficacy of Leuprorelide acetate (Eligard®) in daily practice in Brazil: a retrospective study with depot formulations in patients with prostate cancer. Int Braz J Urol. 2020;46(3):383–9. https://doi.org/10.1590/S1677-5538.IBJU.2019.0212.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dehaini D, Fang RH, Luk BT, Pang Z, Hu CM, Kroll AV, Yu CL, Gao W, Zhang L. Ultra-small lipid-polymer hybrid nanoparticles for tumor-penetrating drug delivery. Nanoscale. 2016;8(30):14411–9. https://doi.org/10.1039/c6nr04091h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Desai P, Venkataramanan A, Schneider R, Jaiswal MK, Carrow JK, Purwada A, Singh A, Gaharwar AK. Self-assembled, ellipsoidal polymeric nanoparticles for intracellular delivery of therapeutics. J Biomed Mater Res A. 2018;106(7):2048–58. https://doi.org/10.1002/jbm.a.36400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Devarajan PV, Jindal AB, Patil RR, Mulla F, Gaikwad RV, Samad A. Particle shape: a new design parameter for passive targeting in splenotropic drug delivery. J Pharm Sci. 2010;99(6):2576–81. https://doi.org/10.1002/jps.22052.

    Article  CAS  PubMed  Google Scholar 

  23. Di Mascolo D, Lyon CJ, Aryal S, Ramirez MR, Wang J, Candeloro P, Guindani M, Hsueh WA, Decuzzi P. Rosiglitazone-loaded nanospheres for modulating macrophage-specific inflammation in obesity. J Control Release. 2013;170(3):460–8. https://doi.org/10.1016/j.jconrel.2013.06.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Essa S, Rabanel JM, Hildgen P. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density. Int J Pharm. 2011;411(1–2):178–87. https://doi.org/10.1016/j.ijpharm.2011.02.039.

    Article  CAS  PubMed  Google Scholar 

  25. Evans CW, Latter MJ, Ho D, Peerzade SAMA, Clemons TD, Fitzgerald M, Dunlop SA, Iyer KS. Multimodal and multifunctional stealth polymer nanospheres for sustained drug delivery. New J Chem. 2012;36:1457–62. https://doi.org/10.1039/C2NJ40016B.

    Article  CAS  Google Scholar 

  26. Ge Z, Liu S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem Soc Rev. 2013;42(17):7289–325. https://doi.org/10.1039/c3cs60048c.

    Article  CAS  PubMed  Google Scholar 

  27. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol. 2007;2(4):249–55. https://doi.org/10.1038/nnano.2007.70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Geng T, Zhao X, Ma M, Zhu G, Yin L. Resveratrol-loaded albumin nanoparticles with prolonged blood circulation and improved biocompatibility for highly effective targeted pancreatic tumor therapy. Nanoscale Res Lett. 2017;12(1):437. https://doi.org/10.1186/s11671-017-2206-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goel N, Stephens S. Certolizumab pegol. MAbs. 2010;2(2):137–47. https://doi.org/10.4161/mabs.2.2.11271.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gonzalez-Valdivieso J, Girotti A, Muñoz R, Rodriguez-Cabello JC, Arias FJ. Self-assembling ELR-based nanoparticles as smart drug-delivery systems modulating cellular growth via Akt. Biomacromolecules. 2019;20(5):1996–2007. https://doi.org/10.1021/acs.biomac.9b00206.

    Article  CAS  PubMed  Google Scholar 

  31. Gordon EM, Hall FL. Rexin-G, a targeted genetic medicine for cancer. Expert Opin Biol Ther. 2010;10(5):819–32. https://doi.org/10.1517/14712598.2010.481666.

    Article  CAS  PubMed  Google Scholar 

  32. Harsha NS, Rani RHS. Drug targeting to lungs by way of microspheres. Arch Pharm Res. 2006;29:598–604. https://doi.org/10.1007/BF02969272.

    Article  CAS  PubMed  Google Scholar 

  33. He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–66. https://doi.org/10.1016/j.biomaterials.2010.01.065.

    Article  CAS  PubMed  Google Scholar 

  34. Herzog C, Hartmann K, Künzi V, Kürsteiner O, Mischler R, Lazar H, Glück R. Eleven years of Inflexal V-a virosomal adjuvanted influenza vaccine. Vaccine. 2009;27(33):4381–7. https://doi.org/10.1016/j.vaccine.2009.05.029.

    Article  CAS  PubMed  Google Scholar 

  35. Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A. 1998;95(8):4607–12. https://doi.org/10.1073/pnas.95.8.4607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hu J, Li HY, Williams GR, Yang HH, Tao L, Zhu LM. Electrospun poly(N-isopropylacrylamide)/ethyl cellulose nanofibers as thermoresponsive drug delivery systems. J Pharm Sci. 2016;105(3):1104–12. https://doi.org/10.1016/S0022-3549(15)00191-4.

    Article  CAS  PubMed  Google Scholar 

  37. Hubbe H, Mendes E, Boukany PE. Polymeric nanowires for diagnostic applications. Micromachines (Basel). 2019;10(4):225. https://doi.org/10.3390/mi10040225.

    Article  Google Scholar 

  38. Iranpur Mobarakeh V, Modarressi MH, Rahimi P, Bolhassani A, Arefian E, Atyabi F, Vahabpour R. Optimization of chitosan nanoparticles as an anti-HIV siRNA delivery vehicle. Int J Biol Macromol. 2019;129:305–15. https://doi.org/10.1016/j.ijbiomac.2019.02.036.

    Article  CAS  PubMed  Google Scholar 

  39. Juretić D, Golemac A, Strand DE, Chung K, Ilić N, Goić-Barišić I, Pellay FX. The spectrum of design solutions for improving the activity-selectivity product of peptide antibiotics against multidrug-resistant bacteria and prostate cancer PC-3 cells. Molecules. 2020;25(15):3526. https://doi.org/10.3390/molecules25153526.

    Article  CAS  PubMed Central  Google Scholar 

  40. Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK. Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C Mater Biol Appl. 2019;98:1252–76. https://doi.org/10.1016/j.msec.2019.01.066.

    Article  CAS  PubMed  Google Scholar 

  41. Kanaparthi A, Kukura S, Slenkovich N, AlGhamdi F, Shafy SZ, Hakim M, Tobias JD. Perioperative Administration of Emend® (Aprepitant) at a Tertiary Care Children’s Hospital: a 12-month survey. Clin Pharmacol. 2019;11:155–60. https://doi.org/10.2147/CPAA.S221736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim JY, Do YR, Song HS, Cho YY, Ryoo HM, Bae SH, Kim JG, Chae YS, Kang BW, Baek JH, Kim MK, Lee KH, Park K. Multicenter Phase II Clinical Trial of Genexol-PM® with gemcitabine in advanced biliary tract cancer. Anticancer Res. 2017;37(3):1467–73. https://doi.org/10.21873/anticanres.11471.

    Article  CAS  PubMed  Google Scholar 

  43. Kırımlıoğlu GY, Görgülü S. Surface modification of PLGA nanoparticles with chitosan or Eudragit® RS 100: characterization, prolonged release, cytotoxicity, and enhanced antimicrobial activity. J Drug Deliv Sci Technol. 2021;61:102145. https://doi.org/10.1016/j.jddst.2020.102145.

    Article  CAS  Google Scholar 

  44. Kolhar P, Doshi N, Mitragotri S. Polymer nanoneedle-mediated intracellular drug delivery. Small. 2011;7(14):2094–100. https://doi.org/10.1002/smll.201100497.

    Article  CAS  PubMed  Google Scholar 

  45. Kolhar P, Anselmo AC, Gupta V, Pant K, Prabhakarpandian B, Ruoslahti E, Mitragotri S. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc Natl Acad Sci U S A. 2013;110(26):10753–8. https://doi.org/10.1073/pnas.1308345110.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kulkarni SA, Feng SS. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res. 2013;30(10):2512–22. https://doi.org/10.1007/s11095-012-0958-3.

    Article  CAS  PubMed  Google Scholar 

  47. Kurniawan DW, Jajoriya AK, Dhawan G, Mishra D, Argemi J, Bataller R, Storm G, Mishra DP, Prakash J, Bansal R. Therapeutic inhibition of spleen tyrosine kinase in inflammatory macrophages using PLGA nanoparticles for the treatment of non-alcoholic steatohepatitis. J Control Release. 2018;288:227–38. https://doi.org/10.1016/j.jconrel.2018.09.004.

    Article  CAS  PubMed  Google Scholar 

  48. Lee KSS, Yang J, Niu J, Ng CJ, Wagner KM, Dong H, Kodani SD, Wan D, Morisseau C, Hammock BD. Drug-target residence time affects in vivo target occupancy through multiple pathways. ACS Cent Sci. 2019;5(9):1614–24. https://doi.org/10.1021/acscentsci.9b00770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Levchenko TS, Rammohan R, Lukyanov AN, Whiteman KR, Torchilin VP. Liposome clearance in mice: the effect of a separate and combined presence of surface charge and polymer coating. Int J Pharm. 2002;240(1–2):95–102. https://doi.org/10.1016/s0378-5173(02)00129-1.

    Article  CAS  PubMed  Google Scholar 

  50. Li Y, Kroger M, Liu WK. Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk. Nanoscale. 2015;7:16631–46. https://doi.org/10.1039/C5NR02970H.

    Article  CAS  PubMed  Google Scholar 

  51. Li M, Jiang S, Simon J, Paßlick D, Frey ML, Wagner M, Mailänder V, Crespy D, Landfester K. Brush conformation of polyethylene glycol determines the stealth effect of nanocarriers in the low protein adsorption regime. Nano Lett. 2021;21(4):1591–8. https://doi.org/10.1021/acs.nanolett.0c03756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lin YS, Hurley KR, Haynes CL. Critical considerations in the biomedical use of mesoporous silica nanoparticles. J Phys Chem Lett. 2012;3(3):364–74. https://doi.org/10.1021/jz2013837.

    Article  CAS  PubMed  Google Scholar 

  53. Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond). 2008;3(5):703–17. https://doi.org/10.2217/17435889.3.5.703.

    Article  CAS  Google Scholar 

  54. Lorenz MR, Holzapfel V, Musyanovych A, Nothelfer K, Walther P, Frank H, Landfester K, Schrezenmeier H, Mailänder V. Uptake of functionalized, fluorescent-labeled polymeric particles in different cell lines and stem cells. Biomaterials. 2006;27(14):2820–8. https://doi.org/10.1016/j.biomaterials.2005.12.022.

    Article  CAS  PubMed  Google Scholar 

  55. Margulis K, Zhang X, Joubert LM, Bruening K, Tassone CJ, Zare RN, Waymouth RM. Formation of polymeric nanocubes by self-assembly and crystallization of dithiolane-containing triblock copolymers. Angew Chem Int Ed Engl. 2017;56(51):16357–62. https://doi.org/10.1002/anie.201709564.

    Article  CAS  PubMed  Google Scholar 

  56. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–24. https://doi.org/10.1038/s41573-020-0090-8.

    Article  CAS  PubMed  Google Scholar 

  57. Müllner M, Dodds SJ, Nguyen TH, Senyschyn D, Porter CJ, Boyd BJ, Caruso F. Size and rigidity of cylindrical polymer brushes dictate long circulating properties in vivo. ACS Nano. 2015;9(2):1294–304. https://doi.org/10.1021/nn505125f.

    Article  CAS  PubMed  Google Scholar 

  58. Nima ZA, Alwbari AM, Dantuluri V, Hamzah RN, Sra N, Motwani P, Arnaoutakis K, Levy RA, Bohliqa AF, Nedosekin D, Zharov VP, Makhoul I, Biris AS. Targeting nano drug delivery to cancer cells using tunable, multi-layer, silver-decorated gold nanorods. J Appl Toxicol. 2017;37(12):1370–8. https://doi.org/10.1002/jat.3495.

    Article  CAS  PubMed  Google Scholar 

  59. Nishida N, Yano H, Nishida T, Kamura T, Kojiro M. Angiogenesis in cancer. Vasc Health Risk Manag. 2006;2(3):213–9. https://doi.org/10.2147/vhrm.2006.2.3.213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Numata M, Grinkova YV, Mitchell JR, Chu HW, Sligar SG, Voelker DR. Nanodiscs as a therapeutic delivery agent: inhibition of respiratory syncytial virus infection in the lung. Int J Nanomedicine. 2013;8:1417–27. https://doi.org/10.2147/IJN.S39888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Owens DE 3rd, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102. https://doi.org/10.1016/j.ijpharm.2005.10.010.

    Article  CAS  PubMed  Google Scholar 

  62. Panariti A, Miserocchi G, Rivolta I. The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions? Nanotechnol Sci Appl. 2012;5:87–100. https://doi.org/10.2147/NSA.S25515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Patil RR, Gaikwad RV, Samad A, Devarajan PV. Role of lipids in enhancing splenic uptake of polymer-lipid (LIPOMER) nanoparticles. J Biomed Nano. 2008;4(3):359–66. https://doi.org/10.1166/jbn.2008.320.

    Article  CAS  Google Scholar 

  64. Perrault SD, Walkey C, Jennings T, Fischer HC, Chan WC. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009;9(5):1909–15. https://doi.org/10.1021/nl900031y.

    Article  CAS  PubMed  Google Scholar 

  65. Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC, Barry ST, Gabizon A, Grodzinski P, Blakey DC. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res. 2013;73(8):2412–7. https://doi.org/10.1158/0008-5472.CAN-12-4561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Punfa W, Yodkeeree S, Pitchakarn P, Ampasavate C, Limtrakul P. Enhancement of cellular uptake and cytotoxicity of curcumin-loaded PLGA nanoparticles by conjugation with anti-P-glycoprotein in drug resistance cancer cells. Acta Pharmacol Sin. 2012;33(6):823–31. https://doi.org/10.1038/aps.2012.34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Qie Y, Yuan H, von Roemeling CA, Chen Y, Liu X, Shih KD, Knight JA, Tun HW, Wharen RE, Jiang W, Kim BY. Corrigendum: surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Sci Rep. 2016;6:30663. https://doi.org/10.1038/srep30663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rizvi SAA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018;26(1):64–70. https://doi.org/10.1016/j.jsps.2017.10.012.

    Article  PubMed  Google Scholar 

  69. Ruggiero A, Villa CH, Bander E, Rey DA, Bergkvist M, Batt CA, Manova-Todorova K, Deen WM, Scheinberg DA, McDevitt MR. Paradoxical glomerular filtration of carbon nanotubes. Proc Natl Acad Sci U S A. 2010;107(27):12369–74. https://doi.org/10.1073/pnas.0913667107.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Salmaso S, Caliceti P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J Drug Deliv. 2013;2013:374252. https://doi.org/10.1155/2013/374252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sharma G, Valenta DT, Altman Y, Harvey S, Xie H, Mitragotri S, Smith JW. Polymer particle shape independently influences binding and internalization by macrophages. J Control Release. 2010;147(3):408–12. https://doi.org/10.1016/j.jconrel.2010.07.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sheng Y, Chang L, Kuang T, Hu J. PEG/heparin-decorated lipid–polymer hybrid nanoparticles for long-circulating drug delivery. RSC Adv. 2016;6:23279–87. https://doi.org/10.1039/C5RA26215A.

    Article  CAS  Google Scholar 

  73. Song G, Petschauer JS, Madden AJ, Zamboni WC. Nanoparticles and the mononuclear phagocyte system: pharmacokinetics and applications for inflammatory diseases. Curr Rheumatol Rev. 2014;10(1):22–34. https://doi.org/10.2174/1573403x10666140914160554.

    Article  CAS  PubMed  Google Scholar 

  74. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99(Pt A):28–51. https://doi.org/10.1016/j.addr.2015.09.012.

    Article  CAS  PubMed  Google Scholar 

  75. Termsarasab U, Yoon IS, Park JH, Moon HT, Cho HJ, Kim DD. Polyethylene glycol-modified arachidyl chitosan-based nanoparticles for prolonged blood circulation of doxorubicin. Int J Pharm. 2014;464(1–2):127–34. https://doi.org/10.1016/j.ijpharm.2014.01.015.

    Article  CAS  PubMed  Google Scholar 

  76. Torres-Martinez EJ, Cornejo Bravo JM, Serrano Medina A, Pérez González GL, Villarreal Gómez LJ. A summary of electrospun nanofibers as drug delivery system: drugs loaded and biopolymers used as matrices. Curr Drug Deliv. 2018;15(10):1360–74. https://doi.org/10.2174/1567201815666180723114326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Verma A, Stellacci F. Effect of surface properties on nanoparticle-cell interactions. Small. 2010;6(1):12–21. https://doi.org/10.1002/smll.200901158.

    Article  CAS  PubMed  Google Scholar 

  78. Walkey CD, Olsen JB, Guo H, Emili A, Chan WC. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J Am Chem Soc. 2012;134(4):2139–47. https://doi.org/10.1021/ja2084338.

    Article  CAS  PubMed  Google Scholar 

  79. Wang HX, Zuo ZQ, Du JZ, Wang YC, Sun R, Cao ZT, Ye XD, Wang JL, Leong KW, Wang J. Surface charge critically affects tumor penetration and therapeutic efficacy of cancer nanomedicines. NanoToday. 2016;11(2):133–44. https://doi.org/10.1016/j.nantod.2016.04.008.

    Article  CAS  Google Scholar 

  80. Wang J, Hu X, Xiang D. Nanoparticle drug delivery systems: an excellent carrier for tumor peptide vaccines. Drug Deliv. 2018;25(1):1319–27. https://doi.org/10.1080/10717544.2018.1477857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang Y, Zhou C, Ding Y, Liu M, Tai Z, Jin Q, Yang Y, Li Z, Yang M, Gong W, Gao C. Red blood cell-hitchhiking chitosan nanoparticles for prolonged blood circulation time of vitamin K1. Int J Pharm. 2021;592:120084. https://doi.org/10.1016/j.ijpharm.2020.120084.

    Article  CAS  PubMed  Google Scholar 

  82. Wen R, Umeano AC, Kou Y, Xu J, Farooqi AA. Nanoparticle systems for cancer vaccine. Nanomedicine (Lond). 2019;14(5):627–48. https://doi.org/10.2217/nnm-2018-0147.

    Article  CAS  Google Scholar 

  83. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1:16014. https://doi.org/10.1038/natrevmats.2016.14.

    Article  CAS  Google Scholar 

  84. Wisse E, Jacobs F, Topal B, Frederik P, De Geest B. The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Ther. 2008;15(17):1193–9. https://doi.org/10.1038/gt.2008.60.

    Article  CAS  PubMed  Google Scholar 

  85. Xiao K, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, Agarwal RG, Lam KS. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials. 2011;32(13):3435–46. https://doi.org/10.1016/j.biomaterials.2011.01.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xiao B, Ma P, Ma L, Chen Q, Si X, Walter L, Merlin D. Effects of tripolyphosphate on cellular uptake and RNA interference efficiency of chitosan-based nanoparticles in Raw 264.7 macrophages. J Colloid Interface Sci. 2017;490:520–8. https://doi.org/10.1016/j.jcis.2016.11.088.

    Article  CAS  PubMed  Google Scholar 

  87. Yadav D, Dewangan H. PEGYLATION: an important approach for novel drug delivery system. J Biomater Sci Polym Ed. 2021;32(2):266–80. https://doi.org/10.1080/09205063.2020.1825304.

    Article  CAS  PubMed  Google Scholar 

  88. Yamashita F, Hashida M. Pharmacokinetic considerations for targeted drug delivery. Adv Drug Deliv Rev. 2013;65(1):139–47. https://doi.org/10.1016/j.addr.2012.11.006.

    Article  CAS  PubMed  Google Scholar 

  89. Yang Q, Jones SW, Parker CL, Zamboni WC, Bear JE, Lai SK. Evading immune cell uptake and clearance requires PEG grafting at densities substantially exceeding the minimum for brush conformation. Mol Pharm. 2014;11(4):1250–8. https://doi.org/10.1021/mp400703d.

    Article  CAS  PubMed  Google Scholar 

  90. Yao J, Fan Y, Du R, Zhou J, Lu Y, Wang W, Ren J, Sun X. Amphoteric hyaluronic acid derivative for targeting gene delivery. Biomaterials. 2010;31(35):9357–65. https://doi.org/10.1016/j.biomaterials.2010.08.043.

    Article  CAS  PubMed  Google Scholar 

  91. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 1995;55(17):3752–6.

    CAS  PubMed  Google Scholar 

  92. Yue ZG, Wei W, Lv PP, Yue H, Wang LY, Su ZG, Ma GH. Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules. 2011;12(7):2440–6. https://doi.org/10.1021/bm101482r.

    Article  CAS  PubMed  Google Scholar 

  93. Zhang J, Liu J, Zhao Y, Wang G, Zhou F. Plasma and cellular pharmacokinetic considerations for the development and optimization of antitumor block copolymer micelles. Expert Opin Drug Deliv. 2015;12(2):263–81. https://doi.org/10.1517/17425247.2014.945417.

    Article  CAS  PubMed  Google Scholar 

  94. Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J Control Release. 2016;240:332–48. https://doi.org/10.1016/j.jconrel.2016.01.020.

    Article  CAS  PubMed  Google Scholar 

  95. Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small. 2011;7(10):1322–37. https://doi.org/10.1002/smll.201100001.

    Article  CAS  PubMed  Google Scholar 

  96. Zhao Y, Wei C, Chen X, Liu J, Yu Q, Liu Y, Liu J. Drug delivery system based on near-infrared light-responsive molybdenum disulfide nanosheets controls the high-efficiency release of dexamethasone to inhibit inflammation and treat osteoarthritis. ACS Appl Mater Interfaces. 2019;11(12):11587–601. https://doi.org/10.1021/acsami.8b20372.

    Article  CAS  PubMed  Google Scholar 

  97. Zhou Z, Ma X, Jin E, Tang J, Sui M, Shen Y, Van Kirk EA, Murdoch WJ, Radosz M. Linear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery. Biomaterials. 2013;34:5722–35. https://doi.org/10.1016/j.biomaterials.2013.04.012.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parmar, K., Patel, J., Pathak, Y. (2022). Factors Affecting the Clearance and Biodistribution of Polymeric Nanoparticles. In: Patel, J.K., Pathak, Y.V. (eds) Pharmacokinetics and Pharmacodynamics of Nanoparticulate Drug Delivery Systems . Springer, Cham. https://doi.org/10.1007/978-3-030-83395-4_14

Download citation

Publish with us

Policies and ethics