Skip to main content

Euclidean Maximum Matchings in the Plane—Local to Global

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12808))

Included in the following conference series:

  • 1049 Accesses

Abstract

Let M be a perfect matching on a set of points in the plane where every edge is a line segment between two points. We say that M is globally maximum if it is a maximum-length matching on all points. We say that M is k-local maximum if for any subset \(M'=\{a_1b_1,\dots ,a_kb_k\}\) of k edges of M it holds that \(M'\) is a maximum-length matching on points \(\{a_1,b_1,\dots ,a_k,b_k\}\). We show that local maximum matchings are good approximations of global ones.

Let \(\mu _k\) be the infimum ratio of the length of any k-local maximum matching to the length of any global maximum matching, over all finite point sets in the Euclidean plane. It is known that \(\mu _k\geqslant \frac{k-1}{k}\) for any \(k\geqslant 2\). We show the following improved bounds for \(k\in \{2,3\}\): \(\mu _2\geqslant \sqrt{3/7} \) and \(\mu _3\geqslant 1/\sqrt{2}\). We also show that every pairwise crossing matching is unique and it is globally maximum.

Towards our proof of the lower bound for \(\mu _2\) we show the following result which is of independent interest: If we increase the radii of pairwise intersecting disks by factor \(2/\sqrt{3}\), then the resulting disks have a common intersection.

Supported by NSERC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This problem has applications in multicommodity flows in planar graphs [28].

References

  1. Alon, N., Rajagopalan, S., Suri, S.: Long non-crossing configurations in the plane. Fundam. Inform. 22(4), 385–394 (1995). Also in SoCG 1993

    Article  MathSciNet  Google Scholar 

  2. Arkin, E.M., Hassin, R.: On local search for weighted \(k\)-set packing. Math. Oper. Res. 23(3), 640–648 (1998). Also in ESA 1997

    Article  MathSciNet  Google Scholar 

  3. Avis, D.: A survey of heuristics for the weighted matching problem. Networks 13(4), 475–493 (1983)

    Article  MathSciNet  Google Scholar 

  4. Bereg, S., Chacón-Rivera, O., Flores-Peñaloza, D., Huemer, C., Pérez-Lantero, P., Seara, C.: On maximum-sum matchings of points (2019). arXiv:1911.10610

  5. Biniaz, A., et al.: Maximum plane trees in multipartite geometric graphs. Algorithmica 81(4), 1512–1534 (2019). Also in WADS 2017

    Article  MathSciNet  Google Scholar 

  6. Carmi, P., Katz, M.J., Morin, P.: Stabbing pairwise intersecting disks by four points (2018). arXiv:1812.06907

  7. Danzer, L.: Zur Lösung des Gallaischen Problems über Kreisscheiben in der Euklidischen Ebene. Stud. Sci. Math. Hung. 21(1–2), 111–134 (1986)

    MATH  Google Scholar 

  8. Duan, R., Pettie, S.: Linear-time approximation for maximum weight matching. J. ACM 61(1), 1:1–1:23 (2014)

    Google Scholar 

  9. Dumitrescu, A., Tóth, C.D.: Long non-crossing configurations in the plane. Discrete Comput. Geom. 44(4), 727–752 (2010). Also in STACS 2010

    Article  MathSciNet  Google Scholar 

  10. Dyer, M., Frieze, A., McDiarmid, C.: Partitioning heuristics for two geometric maximization problems. Oper. Res. Lett. 3(5), 267–270 (1984)

    Article  MathSciNet  Google Scholar 

  11. Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. J. Res. Natl. Bur. Stand. B 69, 125–130 (1965)

    Article  MathSciNet  Google Scholar 

  12. Edmonds, J.: Paths, trees, and flowers. Canad. J. Math. 17, 449–467 (1965)

    Article  MathSciNet  Google Scholar 

  13. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972)

    Article  Google Scholar 

  14. Eppstein, D.: Geometry junkyard. https://www.ics.uci.edu/~eppstein/junkyard/maxmatch.html

  15. Gabow, H.N.: Data structures for weighted matching and nearest common ancestors with linking. In: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms \((\)SODA\()\), pp. 434–443 (1990)

    Google Scholar 

  16. Gabow, H.N.: Data structures for weighted matching and extensions to b-matching and f-factors. ACM Trans. Algorithms 14(3), 39:1–39:80 (2018)

    Google Scholar 

  17. Gabow, H.N., Galil, Z., Spencer, T.H.: Efficient implementation of graph algorithms using contraction. J. ACM 36(3), 540–572 (1989)

    Article  MathSciNet  Google Scholar 

  18. Galil, Z., Micali, S., Gabow, H.N.: An O(EV log V) algorithm for finding a maximal weighted matching in general graphs. SIAM J. Comput. 15(1), 120–130 (1986). Also in FOCS 1982

    Article  MathSciNet  Google Scholar 

  19. Hadlock, F.: Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comput. 4(3), 221–225 (1975)

    Article  MathSciNet  Google Scholar 

  20. Har-Peled, S., et al.: Stabbing pairwise intersecting disks by five points. In: 29th International Symposium on Algorithms and Computation, ISAAC, pp. 50:1–50:12 (2018)

    Google Scholar 

  21. Helly, E.: Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresber. Dtsch. Math. Ver. 32, 175–176 (1923)

    MATH  Google Scholar 

  22. Huemer, C., Pérez-Lantero, P., Seara, C., Silveira, R.I.: Matching points with disks with a common intersection. Discrete Math. 342(7), 1885–1893 (2019)

    Article  MathSciNet  Google Scholar 

  23. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2, 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  24. Kuhn, H.W.: Variants of the Hungarian method for assignment problems. Naval Res. Logist. Q. 3, 253–258 (1956)

    Article  MathSciNet  Google Scholar 

  25. Lawler, E.: Combinatorial Optimization: Networks And Matroids. Holt, Rinehart and Winston, New York (1976)

    MATH  Google Scholar 

  26. Lee, J., Sviridenko, M., Vondrák, J.: Submodular maximization over multiple matroids via generalized exchange properties. Math. Oper. Res. 35(4), 795–806 (2010)

    Article  MathSciNet  Google Scholar 

  27. McKeown, N., Anantharam, V., Walrand, J.C.: Achieving 100% throughput in an input-queued switch. In: Proceedings of the 15th IEEE INFOCOM, pp. 296–302 (1996)

    Google Scholar 

  28. Okamura, H., Seymour, P.D.: Multicommodity flows in planar graphs. J. Comb. Theory Ser. B 31(1), 75–81 (1981)

    Article  MathSciNet  Google Scholar 

  29. Radon, J.: Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten. Math. Ann. 83(1), 113–115 (1921)

    Article  MathSciNet  Google Scholar 

  30. Rendl, F.: On the Euclidean assignment problem. J. Comput. Appl. Math. 23(3), 257–265 (1988)

    Article  MathSciNet  Google Scholar 

  31. Stachó, L.: A solution of Gallai’s problem on pinning down circles. Mat. Lapok 32(1–3), 19–47 (1981). (1981/1984)

    MathSciNet  MATH  Google Scholar 

  32. Wagner, D., Weihe, K.: A linear-time algorithm for edge-disjoint paths in planar graphs. Combinatorica 15(1), 135–150 (1995). Also in ESA 1993

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Biniaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biniaz, A., Maheshwari, A., Smid, M. (2021). Euclidean Maximum Matchings in the Plane—Local to Global. In: Lubiw, A., Salavatipour, M., He, M. (eds) Algorithms and Data Structures. WADS 2021. Lecture Notes in Computer Science(), vol 12808. Springer, Cham. https://doi.org/10.1007/978-3-030-83508-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83508-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83507-1

  • Online ISBN: 978-3-030-83508-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics