Skip to main content

Computational Schemes for Subresultant Chains

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12865))

Included in the following conference series:

Abstract

Subresultants are one of the most fundamental tools in computer algebra. They are at the core of numerous algorithms including, but not limited to, polynomial GCD computations, polynomial system solving, and symbolic integration. When the subresultant chain of two polynomials is involved in a client procedure, not all polynomials of the chain, or not all coefficients of a given subresultant, may be needed. Based on that observation, this paper discusses different practical schemes, and their implementation, for efficiently computing subresultants. Extensive experimentation supports our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdeljaoued, J., Diaz-Toca, G.M., González-Vega, L.: Bezout matrices, subresultant polynomials and parameters. Appl. Math. Comput. 214(2), 588–594 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Asadi, M., et al.: Basic Polynomial Algebra Subprograms (BPAS) (version 1.791) (2021). http://www.bpaslib.org

  3. Asadi, M., Brandt, A., Moir, R.H.C., Moreno Maza, M., Xie, Y.: Parallelization of triangular decompositions: techniques and implementation. J. Symb. Comput. (2021, to appear)

    Google Scholar 

  4. Becker, E., Mora, T., Grazia Marinari, M., Traverso, C.: The shape of the shape lemma. In: Proceedings of ISSAC 1994, pp. 129–133. ACM (1994)

    Google Scholar 

  5. Chen, C., Moreno Maza, M.: Algorithms for computing triangular decomposition of polynomial systems. J. Symb. Comput. 47(6), 610–642 (2012)

    Article  MathSciNet  Google Scholar 

  6. Covanov, S., Mohajerani, D., Moreno Maza, M., Wang, L.: Big prime field FFT on multi-core processors. In: Proceedings of the 2019 International Symposium on Symbolic and Algebraic Computation (ISSAC), pp. 106–113. ACM (2019)

    Google Scholar 

  7. Covanov, S., Moreno Maza, M.: Putting Fürer algorithm into practice. Technical report (2014). http://www.csd.uwo.ca/~moreno//Publications/Svyatoslav-Covanov-Rapport-de-Stage-Recherche-2014.pdf

  8. Della Dora, J., Dicrescenzo, C., Duval, D.: About a new method for computing in algebraic number fields. In: Caviness, B.F. (ed.) EUROCAL 1985. LNCS, vol. 204, pp. 289–290. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-15984-3_279

    Chapter  Google Scholar 

  9. Ducos, L.: Algorithme de Bareiss, algorithme des sous-résultants. Informatique Théorique et Applications 30(4), 319–347 (1996)

    Article  MathSciNet  Google Scholar 

  10. Ducos, L.: Optimizations of the subresultant algorithm. J. Pure Appl. Algebra 145(2), 149–163 (2000)

    Article  MathSciNet  Google Scholar 

  11. Filatei, A., Li, X., Moreno Maza, M., Schost, E.: Implementation techniques for fast polynomial arithmetic in a high-level programming environment. In: Proceedings of ISSAC, pp. 93–100 (2006)

    Google Scholar 

  12. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 3rd edn. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  13. Granlund, T., The GMP Development Team: GNU MP: the GNU multiple precision arithmetic library (version 6.1.2) (2020). http://gmplib.org

  14. van der Hoeven, J., Lecerf, G., Mourrain, B.: Mathemagix (from 2002). http://www.mathemagix.org

  15. Kahoui, M.E.: An elementary approach to subresultants theory. J. Symb. Comput. 35(3), 281–292 (2003)

    Article  MathSciNet  Google Scholar 

  16. Knuth, D.E.: The analysis of algorithms. Actes du congres international des Mathématiciens 3, 269–274 (1970)

    Google Scholar 

  17. Lecerf, G.: On the complexity of the Lickteig-Roy subresultant algorithm. J. Symb. Comput. 92, 243–268 (2019)

    Article  MathSciNet  Google Scholar 

  18. Lehmer, D.H.: Euclid’s algorithm for large numbers. Am. Math. Mon. 45(4), 227–233 (1938)

    Article  MathSciNet  Google Scholar 

  19. Lemaire, F., Moreno Maza, M., Xie, Y.: The RegularChains library in MAPLE. In: Maple Conference, vol. 5, pp. 355–368 (2005)

    Google Scholar 

  20. Lickteig, T., Roy, M.F.: Semi-algebraic complexity of quotients and sign determination of remainders. J. Complex. 12(4), 545–571 (1996)

    Article  MathSciNet  Google Scholar 

  21. Maplesoft, a division of Waterloo Maple Inc.: Maple (2020). www.maplesoft.com

  22. Monagan, M.: Probabilistic algorithms for computing resultants. In: Proceedings of ISSAC 2005, pp. 245–252. ACM (2005)

    Google Scholar 

  23. Monagan, M., Tuncer, B.: Factoring multivariate polynomials with many factors and huge coefficients. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2018. LNCS, vol. 11077, pp. 319–334. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99639-4_22

    Chapter  Google Scholar 

  24. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput. 44(170), 519–521 (1985)

    Article  MathSciNet  Google Scholar 

  25. Reischert, D.: Asymptotically fast computation of subresultants. In: Proceedings of ISSAC 1997, pp. 233–240. ACM (1997)

    Google Scholar 

  26. Schönhage, A.: Schnelle Berechnung von Kettenbruchentwicklungen. Acta Informatica 1, 139–144 (1971)

    Article  Google Scholar 

  27. Shoup, V., et al.: NTL: a library for doing number theory (version 11.4.3) (2021). www.shoup.net/ntl

  28. Thull, K., Yap, C.: A unified approach to HGCD algorithms for polynomials and integers. Manuscript (1990)

    Google Scholar 

  29. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.) Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09519-5_73

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Robert H. C. Moir and NSERC of Canada (award CGSD3-535362-2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadali Asadi .

Editor information

Editors and Affiliations

A Maple code for Polynomial Systems

A Maple code for Polynomial Systems

figure s
figure t

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Asadi, M., Brandt, A., Moreno Maza, M. (2021). Computational Schemes for Subresultant Chains. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2021. Lecture Notes in Computer Science(), vol 12865. Springer, Cham. https://doi.org/10.1007/978-3-030-85165-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85165-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85164-4

  • Online ISBN: 978-3-030-85165-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics