Skip to main content

Bioprospecting for Biomolecules from Different Fungal Communities: An Introduction

  • Chapter
  • First Online:
Industrially Important Fungi for Sustainable Development

Abstract

Fungi display an extraordinary level of structural and functional diversity with an estimated 1.5–5.1 million extant species. But, only 100,000 fungal species have so far been described. Fungi are one of the most important groups of eukaryotic organisms that are exploited for metabolites of potential therapeutic value as well as applications in diverse industries; by the way, fungal metabolites have a long history of both adverse and beneficial effects. Fungal biomolecules are an indispensable tool planned to accelerate the pace of the current research regarding the diverse roles of fungal biomolecules. The chapter encompasses a wide range of topics related to biomolecules synthesized and secreted by various fungal ecological groups useful in industrial, pharmaceutical, agricultural, and biotechnology sectors. Topics related to fungal enzymes have highlighted the significance of such enzymes in textile industries and environmental cleanup programs through the absorption of toxic heavy metals from soil, sludge, and industrial wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A, Koc H, Liu F, Tien M (2005) Fungal degradation of wood: initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr Genet 47:49–56

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Azeem AM (2020) Taxonomy and biodiversity of the genus Chaetomium in different habitats. In: Abdel-Azeem AM (ed) Recent developments on genus Chaetomium, Fungal biology. Springer Nature, Switzerland, pp 3–77. https://doi.org/10.1007/978-3-030-31612-9_1

    Chapter  Google Scholar 

  • Abdel-Azeem AM, Gab Allah MM (2011) Aspergillus niger and Spirogyra varians as new biosorbents of heavy metals and radionuclides from polluted groundwater in South Sinai, Egypt, Assiut Univ J Bot 40(2): 159–193

    Google Scholar 

  • Abdel-Azeem AM, Salem FM (2015) Fungi fimicola Aegyptiaci: I. Recent investigations and conservation in arid South Sinai. Mycosphere 6(2):174–194. https://doi.org/10.5943/mycosphere/6/2/8

    Article  Google Scholar 

  • Abdel-Azeem AM, Abdel-Moneim TS, Ibrahim ME, Hassan MAA, Saleh MY (2007) Effect of long-term heavy metal contamination on diversity of terricolous fungi and nematodes in Egypt - a case study. Water Air Soil Pollut 186(1):233–254

    Article  CAS  Google Scholar 

  • Abdel-Azeem AM, El-Morsy EM, Nour El-Dein MM, Rashad HM (2015) Occurrence and diversity of mycobiota in heavy metal contaminated sedimentsof Mediterranean Coastallagoon El-Manzala, Egypt. Mycosphere 6(2):228–240

    Article  Google Scholar 

  • Abdel-Azeem AM, Abdel-Azeem MA, Abdul-Hadi SY, Darwish AG (2019) Aspergillus: biodiversity, ecological significances, and industrial applications. In: Yadav AN et al (eds) Recent advancement in white biotechnology through fungi, Fungal biology. Springer Nature, Switzerland, pp 121–179. https://doi.org/10.1007/978-3-030-10480-1_4

    Chapter  Google Scholar 

  • Abdel-Hafez SII (1982) Osmophilic fungi of desert soils in Saudi Arabia. Mycopathologia 80:9–14

    Article  Google Scholar 

  • Abdel-Hafez SII, Moubasher AH, Abdel-Fattah HM (1977) Studies on mycoflora of salt marshes in Egypt. IV-Osmophilic fungi. Mycopathologia 62(3):143–151

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Hafez SII, Maubasher AH, Abdel-Fattah HM (1978) Cellulose-decomposing fungi of salt marshes in Egypt. Folia Microbiol (Praha) 23(1):37–44. https://doi.org/10.1007/BF02876594

    Article  CAS  Google Scholar 

  • Abdel-Hafez SII, Zidan MA, Bagy MMK, Abdel-Sater MA (1989) Distribution of two halophilic fungi in the Egyptian soils and glycerol accumulation. Cryptogam Mycol 10:125–133

    Google Scholar 

  • Abdel-Lateff A (2008) Chaetominedione, a new tyrosine kinase inhibitor isolated from the algicolous marine fungus Chaetomium sp. Tetrahedron Lett 49(45):6398–6400

    Article  CAS  Google Scholar 

  • Abdel-Lateff A, König GM, Fisch KM, Höller U, Jones PG, Wright AD (2002) New antioxidant hydroquinone derivatives from the algicolous marine fungus Acremonium sp. J Nat Prod 65(11):1605–1611

    Article  CAS  PubMed  Google Scholar 

  • Abdelrahman SZ, Tucker GA, Daw ZY, Du C (2014) Marine yeast isolation and industrial application. FEMS Yeast Res 14(6):813–825

    Article  Google Scholar 

  • Abdel-Wareth MT, Ghareeb MA (2018) Bioprospecting certain freshwater-derived fungi for phenolic compounds with special emphasis on antimicrobial and larvicidal activity of methyl gallate and p-coumaric acid. Egypt J Chem 61(5):773–784

    Google Scholar 

  • Abdullah SK, Al-Bader SM (1990) On the thermophilic and thermotolerant mycoflora of Iraqi soils. Sydowia 42:1–7

    Google Scholar 

  • Abdullah SK, Zora SE (1993) Chaetomium mesopotamicum, a new thermophilic species from Iraqi soil. Cryptogam Bot 3:387–389

    Google Scholar 

  • Abo Nouh FA (2019) Endophytic fungi for sustainable agriculture. Microb Biosyst 4(1):31–44

    Article  Google Scholar 

  • Abraham EP (1979) A glimpse of the early history of the cephalosporins. Rev Infect Dis 1(1):99–105

    Article  CAS  PubMed  Google Scholar 

  • Acharya K, Sikder R, Dutta AK (2017) Physiochemical characterization and antioxidant activity of methanol extract from an edible mushroom Agrocybe pediades. Int J ChemTech Res 10(3):204–211

    CAS  Google Scholar 

  • Adler L, Blomberg A, Nilsson A (1985) Glycerol metabolism and osmoregulation in the salt-tolerant yeast Debaryomyces hansenii. J Bacteriol 162:300–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal S, Adholeya A, Barrow CJ, Deshmukh SK (2018) Marine fungi: an untapped bioresource for future cosmeceuticals. Phytochem Lett 23:15–20

    Article  CAS  Google Scholar 

  • Aguilera A, González-Toril E (2019) Eukaryotic life in extreme environments: acidophilic fungi. In: Tiquia-Arashiro SM, Grube M (eds) Fungi in extreme environments: ecological role and biotechnological significance. Springer Nature, Switzerland, pp 21–38. https://doi.org/10.1007/978-3-030-19030-9_2

    Chapter  Google Scholar 

  • Aksu Z (2005) Application of biosorption for the removal of organic pollutants: a review. Process Biochem 40(3–4):997–1026

    Article  CAS  Google Scholar 

  • Ali AH, Radwan U, El-Zayat S, El-Sayed MA (2018) Desert plant-fungal endophytic association: the beneficial aspects to their hosts. Biol Forum 10(1):138–145

    CAS  Google Scholar 

  • Allen N, Nordlander M, McGonigle T, Basinger J, Kaminskyj S (2006) Arbuscular mycorrhizae on Axel Heiberg Island (801 N) and at Saskatoon (521 N) Canada. Can J Bot 84:1094–1100

    Article  Google Scholar 

  • Amandeep K, Atri N, Munruchi K (2015) Diversity of species of the genus Conocybe (Bolbitiaceae, Agaricales) collected on dung from Punjab, India. Mycosphere 6(1):19–42. https://doi.org/10.5943/mycosphere/6/1/4

    Article  Google Scholar 

  • Amaral PFF, Da Silva JM, Lehocky BM, Barros-Timmons AMV, Coelho MAZ, Marrucho IM et al (2006) Production and characterization of a bioemulsifier from Yarrowia lipolytica. Process Biochem 41(8):1894–1898

    Article  CAS  Google Scholar 

  • Ameen F, Al Yahya SA, Al Nadhari S, Alasmari H, Alhoshani F, Wainwright M (2019) Phosphate solubilizing bacteria and fungi in desert soils: species, limitations and mechanisms. Arch Agron Soil Sci 65(10):1446–1459

    Article  CAS  Google Scholar 

  • Andlar M, Rezic T, Marđetko N, Kracher D, Ludwig R, Santek B (2018) Lignocellulose degradation: an overview of fungi and fungal enzymes involved in lignocellulose degradation. Eng Life Sci 18:768–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrews S, Pitt JI (1987) Further studies on the water relations of xerophilic fungi, including some halophiles. J Gen Microbiol 133:233–238

    CAS  Google Scholar 

  • Arai T, Mikami Y, Fukushima K, Utsumi T, Yazawa K (1973) A new antibiotic, leucinostatin, derived from Penicillium lilacinum. J Antibiot (Tokyo) 26(3):157–161. https://doi.org/10.7164/antibiotics.26.157

    Article  CAS  Google Scholar 

  • Arantes V, Goodell B (2014) Current understanding of brown-rot fungal biodegradation mechanisms: a review. In: Schultz TP, Goodell B, Nicholas DD (eds) Deterioration and protection of sustainable biomaterials. American Chemical Society, Mississippi, pp 4–21

    Google Scholar 

  • Arenz BE, Blanchette RA (2009) Investigations of fungal diversity in wooden structures and soils at historic sites on the Antarctic Peninsula. Can J Microbiol 55:46–56

    Article  CAS  PubMed  Google Scholar 

  • Arenz BE, Held BW, Jurgens JA, Farrell RL, Blanchette RA (2006) Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biol Biochem 38:3057–3064

    Article  CAS  Google Scholar 

  • Arnebrant K, Bååth E, Nordgren A (1987) Copper tolerance of microfungi isolated from polluted and unpolluted forest soil. Mycologia 79:890–895

    Article  CAS  Google Scholar 

  • Arora J, Ramawat KG (2017) An introduction to endophytes. In: Maheshwari DK (ed) Endophytes: biology and biotechnology, sustainable development and biodiversity 15. Springer International Publishing, Switzerland, pp 1–16. https://doi.org/10.1007/978-3-319-66541-2_1

    Chapter  Google Scholar 

  • Artiola JF, Walworth JL, Say M, Crimmins MA (2019) Soil and land pollution. In: Environmental and pollution science. Academic, New York, pp 219–235

    Chapter  Google Scholar 

  • Asadi S, Ahmadiani A, Esmaeili MA, Sonboli A, Ansari N, Khodagholi F (2010) In vitro antioxidant activities and an investigation of neuroprotection by six Salvia species from Iran: a comparative study. Food Chem Toxicol 48(5):1341–1349. https://doi.org/10.1016/j.fct.2010.02.035

    Article  CAS  PubMed  Google Scholar 

  • Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19:771–783

    Article  CAS  PubMed  Google Scholar 

  • Atagana HI (2009) Biodegradation of HPAs by fungi in contaminated soil containing cadmium and nickel ions. Afr J Biotechnol 8:5780–5789

    Article  Google Scholar 

  • Atalla MM, Zeinab HK, Eman RH, Amani AY, Abeer AA (2010) Screening of some marine-derived fungal isolates for lignin degrading enzymes (LDEs) production. Agric Biol J N Am 1(4):591–599

    Google Scholar 

  • Baker BJ, Lutz MA, Dawson SC, Bond PL, Banfield JF (2004) Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl Environ Microbiol 70:6264–6271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker BJ, Tyson GW, Goosherst L, Banfield JF (2009) Insights into the diversity of eukaryotes in acid mine drainage biofilm communities. Appl Environ Microbiol 75:2192–2199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldrian P (2003) Heavy metal interactions with white rot fungi. Enzym Microb Technol 32:78–91. https://doi.org/10.1016/S0141-0229(02)00245-4

    Article  CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases - occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  PubMed  Google Scholar 

  • Baldrian P (2010) Soil heavy metals: effect of heavy metals on saprotrophic soil fungi. In: Sherameti I, Varma A (eds) Soil heavy metals, Soil biology. Springer, Berlin, pp 263–279

    Chapter  Google Scholar 

  • Bastian F, Alabouvette C, Saiz-Jimenez C (2009) The impact of arthropods on fungal community structure in Lascaux Cave. J Appl Microbiol 106:1456–1462

    Article  CAS  PubMed  Google Scholar 

  • Battley EM, Bartlett EJ (1966) A convenient pH-gradient method for the determination of the maximum and minimum pH for microbial growth. Antonie Van Leeuwenhoek 32:245–255

    Article  CAS  PubMed  Google Scholar 

  • Beena PS (2010) Acidophilic tannase from marine Aspergillus awamori BTMFW032. J Microbiol Biotechnol 20:1403–1414

    Article  CAS  PubMed  Google Scholar 

  • Belly RT, Brock TD (1974) Widespread occurrence of acidophilic strains of Bacillus coagulans in hot springs. J Appl Bacteriol 37:175–177

    Article  CAS  PubMed  Google Scholar 

  • Bennett JW, Faison BD (1997) Use of fungi in biodegradation. In: Hurst CJ (ed) Manual of environmental microbiology. ASM Press, Washington, DC, pp 758–765

    Google Scholar 

  • Bergero R, Girlanda M, Varese GC, Intili D, Luppi AM (1999) Psychrooligotrophic fungi from arctic soils of Franz Joseph Land. Polar Biol 21:361–368

    Article  Google Scholar 

  • Bills GF, Platas G, Pelaez F, Masurekari P (1999) Reclassification of a pneumocandin-producing anamorph, Glarea lozoyensis gen. et sp. nov., previously identified as Zalerion arboricola. Mycol Res 103:179–192

    Article  CAS  Google Scholar 

  • Bills GF, Gloer JB, An Z (2013) Coprophilous fungi: antibiotic discovery and functions in an underexplored arena of microbial defensive mutualism. Curr Opin Microbiol 16:549–565. https://doi.org/10.1016/j.mib.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  • Blanchette RA, Held BW, Arenz BE et al (2010) An Antarctic hot spot for fungi at Shackleton’s historic hut on Cape Royds. Microb Ecol 60:29–38

    Article  PubMed  Google Scholar 

  • Blomberg A, Adler L (1993) Tolerance of fungi to NaCl. In: Jennings DH (ed) Stress tolerance of fungi. Marcel Dekker, New York, pp 209–232

    Google Scholar 

  • Bond CM, Tang Y (2019) Engineering Saccharomyces cerevisiae for production of simvastatin. Metab Eng 51:1–8

    Article  CAS  PubMed  Google Scholar 

  • Bonugli-Santos RC, Durrant LR, DaSilva M, Sette LD (2010) Production of laccase, manganese peroxidase and lignin peroxidase by Brazilian marine-derived fungi. Enzyme Microb Technol 46:32–37

    Article  CAS  Google Scholar 

  • Booth T, Kenkel N (1986) Ecological studies of lignicolous marine fungi: a distribution model based on ordination and classification. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, pp 297–310

    Google Scholar 

  • Brown MT, Hall IR (1989) Metal tolerance in fungi. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Boca Raton, FL, pp 95–104

    Google Scholar 

  • Brown AD, Simpson JR (1972) Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J Gen Microbiol 72:589–591

    Article  CAS  PubMed  Google Scholar 

  • Brown S, Clastre M, Courdavault V, Connor SEO (2015) De novo production of the plant derived alkaloid strictosidine in yeast. Proc Natl Acad Sci U S A 112:3205–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brückner B, Blechschmidt D, Schubert B (1989) Fusarium moniliforme Sheld. a fungus producing a broad spectrum of bioactive metabolites. Zentralbl Mikrobiol 144(1):3–12. https://doi.org/10.1016/s0232-4393(89)80019-8

    Article  PubMed  Google Scholar 

  • Brückner A, Polge C, Lentze N, Auerbach D, Schlattner U (2009) Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 10(6):2763–2788. https://doi.org/10.3390/ijms10062763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris HP (1998) Fungal life in the extremely hypersaline water of the Dead Sea: first records. Proc R Soc Lond B 265:1461–1465

    Article  CAS  Google Scholar 

  • Buchalo AS, Wasser SP, Molitoris HP, Volz PA, Kurchenko I, Lauer I et al (1999) Species diversity and biology of fungal life in the extremely hypersaline water of the Dead Sea. In: Wasser SP (ed) Evolutionary theory and processes: modern perspectives. Kluwer Academic, Dordrecht, pp 293–300

    Google Scholar 

  • Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris HP, Volz PA (2000) Fungi discovered in the Dead Sea. Mycol Res News 104:132–133

    Google Scholar 

  • Bugni TS, Ireland CM (2004) Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat Prod Rep 21:143–163

    Article  CAS  PubMed  Google Scholar 

  • Bulzomi P, Galluzzo P, Bolli A, Leone S, Acconcia F, Marino M (2012) The proapoptotic effect of quercetin in cancer cell lines requires ERb-dependent signals. J Cell Physiol 227:1891–1898. https://doi.org/10.1002/jcp.22917

    Article  CAS  PubMed  Google Scholar 

  • Burtseva YV, Verigina NS, Sova VV, Pivkin MV, Zvyagintseva TN (2003) Filamentous marine fungi as producers of o-glycosylhydrolases: β-1,3-glucanase from Chaetomium idicum. Mar Biotechnol 5:349–359

    Article  CAS  Google Scholar 

  • Butinar L, Zalar P, Frisvad JC, Gunde-Cimerman N (2005a) The genus Eurotium – members of indigenous fungal community in hypersaline waters of salterns. FEMS Microbiol Ecol 51:155–166

    Article  CAS  PubMed  Google Scholar 

  • Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005b) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234

    Article  CAS  PubMed  Google Scholar 

  • Butler MS, Buss AD (2006) Natural products-the future scaffolds for novel antibiotics? Biochem Pharmacol 71:919–929

    Article  CAS  PubMed  Google Scholar 

  • Calaça FJS, Araújo JC, Xavier-Santos S (2017) The ecological status of coprophilic fungi communities. Pesq Ensino Ci Exatas Nat 1(2):136–143. https://doi.org/10.29215/pecen.v1i2.452

    Article  Google Scholar 

  • Calaça FJS, Cortez VG, Xavier-Santos S (2020) Dung fungi from Brazil: Agrocybepediades (Fr.) Fayod (Basidiomycota) in Cerrado. Scientia Plena 16:066201. https://doi.org/10.14808/sci.plena.2020.066201

    Article  CAS  Google Scholar 

  • Carpenter SE, Trappe JM (1985) Phoenicoid fungi: a proposed term for fungi that fruit after heat treatment of substrates. Mycotaxon 23:203–206

    Google Scholar 

  • Carpenter SE, Trappe JM, Ammirati JR (1987) Observations of fungal succession in the Mount St. Helens devastation zone, 1980–1983. Can J Bot 65:716–728

    Article  Google Scholar 

  • Cavicchioli RK, Siddiqui S, Andrews C, Sowers KR (2002) Low-temperature extremophiles and their application. Curr Opin Biotechnol 13:1–9

    Article  Google Scholar 

  • Cetin-Karaca H, Newman MC (2015) Antimicrobial efficacy of plant phenolic compounds against Salmonella and Escherichia coli. Food Biosci 11:8–16. https://doi.org/10.1016/j.fbio.2015.03.002

    Article  CAS  Google Scholar 

  • Chandra N, Kumar S (2017) Antibiotics producing soil microorganisms. In: Antibiotics and antibiotics resistance genes in soils. Springer, Cham, pp 1–18

    Google Scholar 

  • Chaudhuri D, Ghate NB, Singh SS, Mandal N (2015) Methyl gallate isolated from Spondias pinnata exhibits anticancer activity against human glioblastoma by induction of apoptosis and sustained extracellular signal-regulated kinase 1/2 activation. Pharmacogn Mag 11(42):269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Yang S, Zhang L, Zhou YJ (2020) Advanced strategies for production of natural products in yeast. iScience 23(3):100879. https://doi.org/10.1016/j.isci.2020.100879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chi Z, Wang F, Chi Z, Yue L, Liu G, Zhang T (2009) Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Appl Microbiol Biotechnol 82(5):793–804. https://doi.org/10.1007/s00253-009-1882-2

    Article  CAS  PubMed  Google Scholar 

  • Chi ZM, Zhang T, Cao TS, Liu XY, Cui W, Zhao CH (2011) Biotechnological potential of inulin for bioprocesses. Bioresour Technol 102:4295–4303

    Article  CAS  PubMed  Google Scholar 

  • Chi Z, Liu GL, Lu Y, Jiang H, Chi ZM (2016) Bio-products produced by marine yeasts and their potential applications. Bioresour Technol 202:244–252

    Article  CAS  PubMed  Google Scholar 

  • Choi EM (2012) Liquiritigenin isolated from Glycyrrhiza uralensis stimulates osteoblast function in osteoblastic MC3T3-E1 cells. Int Immunopharmacol 12:139–143. https://doi.org/10.1016/j.intimp.2011.11.003

    Article  CAS  PubMed  Google Scholar 

  • Chokpaiboon S, Sommit D, Teerawatananond T, Muangsin N, Bunyapaiboonsri T, Pudhom K (2010) Cytotoxic nor-chamigrane and chamigrane endoperoxides from a basidiomycetous fungus. J Nat Prod 73:1005–1007

    Article  CAS  PubMed  Google Scholar 

  • Chomcheon P, Wiyakrutta S, Sriubolmas N, Ngamrojanavanich N, Kengtong S, Mahidol C, Ruchirawat S, Kittakoop P (2009) Aromatase inhibitory, radical scavenging, and antioxidant activities of depsidones and diaryl ethers from the endophytic fungus Corynespora cassiicola L36. Phytochemistry 70:407–413

    Article  CAS  PubMed  Google Scholar 

  • Christophersen C, Crescente O, Frisvad JC, Gram L, Nielsen J, Nielsen PH, Rahbæk L (1999) Antibacterial activity of marine-derived fungi. Mycopathologia 143:135–138

    Article  CAS  Google Scholar 

  • Chung D, Kim H, Choi HS (2019) Fungi in salterns. J Microbiol 57(9):717–724. https://doi.org/10.1007/s12275-019-9195-3

    Article  CAS  PubMed  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio JS (2015) Fungal biomolecules in plant growth promotion. In: Fungal biomolecules: sources applications and recent developments. Wiley, Hoboken, NJ, pp 345–362

    Chapter  Google Scholar 

  • Cooke WB (1976) Fungi in sewage. In: Jones EBG (ed) Recent advances in aquatic mycology. Elek Science, London, pp 389–434

    Google Scholar 

  • Corinaldesi C, Barone G, Marcellini F, Dell’Anno A, Danovaro R (2017) Marine microbial-derived molecules and their potential use in cosmeceutical and cosmetic products. Mar Drugs 15(4):118

    Article  PubMed Central  Google Scholar 

  • Cushnie TPT, Lamb AJ (2011) Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 38:99–107. https://doi.org/10.1016/j.ijantimicag.2011.02.014

    Article  CAS  PubMed  Google Scholar 

  • D’Souza DT, Tiwari R, Sah AK, Raghukumar C (2006) Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzym Microb Technol 38:504–511

    Article  Google Scholar 

  • D’Souza-Ticlo D, Sharma D, Raghukumar CA (2009) Thermostable metal-tolerant laccase with bioremediation potential from a marine-derived fungus. Mar Biotechnol 11:725–737

    Article  Google Scholar 

  • Dai LX, Ding K (2012) Organic chemistry: breakthroughs and perspectives. Wiley-VCH, Weinheim. ISBN 9783527333776

    Google Scholar 

  • Daisy B, Strobel GA, Castillo U, Ezra D, Sears J, Weaver D et al (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148:3737–3741

    Article  CAS  PubMed  Google Scholar 

  • De Hoog GS, Zalar P, Urzı C, de Leo F, Yurlova NA, Sterflinger K (1999) Relationships of dothideaceous black yeasts and meristematic fungi based on 5.8S and ITS2 rDNA sequence comparison. Stud Mycol 43:31–37

    Google Scholar 

  • De la Rosa AL, Moreno-Escamilla OL, Rodrig-Garcia J, Alvarez-Parrilla E (2019) Phenolic compounds. In: Yahia ME, Garrillo-Lopez A (eds) Postharvest physiology and biochemistry of fruits and vegetables. Elsevier Inc, Amsterdam, pp 253–271

    Google Scholar 

  • De Leo F, Criseo G, Urzi C (1996) Impact of surrounding vegetation and soil on the colonisation of marble statues by dematiaceous fungi. In: Proceedings of the 8th International congress on deterioration and conservation of stone, Berlin, Germany, vol 2, pp 625–630

    Google Scholar 

  • De Leo F, Urzı C, de Hoog GS (1999) Two Coniosporium species from rock surfaces. Stud Mycol 43:77–85

    Google Scholar 

  • Debbab A, Aly AH, Proksch P (2011) Bioactive secondary metabolites from endophytes and associated marine derived fungi. Fungal Divers 49:1–12

    Article  Google Scholar 

  • Degenkolb T, Bruckner H (2008) Peptaibiomics: towards a myriad of bioactive peptides containing Ca-Dialkylamino acids? Chem Biodivers 5:1817–1843

    Article  CAS  PubMed  Google Scholar 

  • Del-Cid A, Ubilla P, Ravanal MC, Medina E, Vaca I, Levicán G, Eyzaguirre J et al (2014) Cold-active xylanase produced by fungi associated with Antarctic marine sponges. Appl Biochem Biotechnol 172:524–532

    Article  CAS  PubMed  Google Scholar 

  • Demain AL (2000) Microbial natural products: a past with a future. In: Wrigley SK, Hayes MA, Thomas R, Chrystal EJT, Nicholson N (eds) Biodiversity: new leads for pharmaceutical and agrochemical industries. The Royal Society of Chemistry, Cambridge, UK, pp 3–16

    Google Scholar 

  • Denizli A, Cihangir N, Rad AY, Taner M, Alsancak G (2004) Removal of chlorophenols from synthetic solutions using Phanerochaete chrysosporium. Process Biochem 39(12):2025–2030

    Article  CAS  Google Scholar 

  • Deshmukh SK, Gupta MK, Prakash V, Reddy MS (2019) Fungal endophytes: a novel source of cytotoxic compounds. In: Jha S (ed) Endophytes and secondary metabolites, Reference series in phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-90484-9_13

    Chapter  Google Scholar 

  • Deslippe JR, Hartmann M, Mohn WW, Simard SW (2011) Long-term experimental manipulation of climate alters the ectomycorrhizal community of Betula nana in Arctic tundra. Glob Change Biol 17:1625–1636

    Article  Google Scholar 

  • Desriac F, Jégou C, Balnois E, Brillet B, Le Chevalier P, Fleury Y (2013) Antimicrobial peptides from marine proteobacteria. Mar Drugs 11:3632–3660

    Article  PubMed  PubMed Central  Google Scholar 

  • Devi R, Kaur T, Guleria G, Rana K, Kour D, Yadav N et al (2020a) Fungal secondary metabolites and their biotechnological application for human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 147–161. https://doi.org/10.1016/B978-0-12-820528-0.00010-7

    Chapter  Google Scholar 

  • Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020b) Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microb Biosyst 5:21–47. https://doi.org/10.21608/mb.2020.32802.1016

    Article  Google Scholar 

  • Dix NJ, Webster J (1995) Fungal ecology. Chapman Hall, London, England

    Book  Google Scholar 

  • Dominguez JM, Martín JJ (2005) Sordarins: inhibitors of fungal elongation factor-2. In: An Z (ed) Handbook of industrial mycology. Marcel Dekker, New York, pp 335–353

    Google Scholar 

  • Dong J, Ru L, He HP et al (2005) Nematicidal sphingolipids from the freshwater fungus Paraniesslia sp. YMF 1.01400. Eur J Lipid Sci Technol 107:779–785

    Article  CAS  Google Scholar 

  • Dong J, Zhou Y, Li R et al (2006) New nematicidalazaphilones from the aquatic fungus Pseudohalonectria adversaria YMF1.01019. FEMS Microbiol Lett 264:65–69

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Zhu Y, Song H, Li R, He H, Liu H et al (2007) Nematicidalresorcylides from the aquatic fungus Caryospora callicarpa YMF1.01026. J Chem Ecol 33(5):1115–1126

    Article  CAS  PubMed  Google Scholar 

  • Doveri F (2004) Fungi Fimicoli italici. A guide to the recognition of Basidiomycetes and Ascomycetes living on feacal material. Fondazione Studi Micologici, Trento. 1104 p

    Google Scholar 

  • Dowzer CE, Kelly JM (1989) Cloning of the CreA gene from Aspergillus nidulans: a gene involved in carbon catabolite repression. Curr Genet 15:457–459

    Article  CAS  PubMed  Google Scholar 

  • Dumitriu D, Peinado RA, Peinado J, de Lerma NL (2015) Grape pomace extract improves the in vitro and in vivo antioxidant properties of wines from sun light dried Pedro Ximénez grapes. J Funct Foods 17:380–387. https://doi.org/10.1016/j.jff.2015.06.003

    Article  CAS  Google Scholar 

  • Duncan SM, Farrell RL, Thwaites JM et al (2006) Endoglucanase-producing fungi isolated from Cape Evans historic expedition hut on Ross Island, Antarctica. Environ Microbiol 8:1212–1219

    Article  CAS  PubMed  Google Scholar 

  • Eggert C, Temp U, Dean JFD, Eriksson KEL (1996) A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase. FEBS Lett 391:144–148

    Article  CAS  PubMed  Google Scholar 

  • Egidi E, de Hoog GS, Isola D, Onofri S, Quaedvlieg W, De Vries M et al (2014) Phylogeny and taxonomy of meristematic rock-inhabiting black fungi in the Dothideomycetes based on multi-locus phylogenies. Fungal Divers 65:127–165

    Article  Google Scholar 

  • Eichenberger M, Lehka BJ, Folly C, Fischer D, Martens S, Simón E et al (2017) Metabolic engineering of Saccharomyces cerevisiae for de novo production of dihydrochalcones with known antioxidant, antidiabetic, and sweet tasting properties. Metab Eng 39:80–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Fawy MM, El-Sharkawy RMI, Abo-Elyousr KAM (2018) Evaluation of certain isolates of Penicillium frequentans against Cercospora leaf spot disease of sugar beet. Egypt J Biol Pest Control 28:49

    Article  Google Scholar 

  • El-Gindy AA, Saad RR (1990) Fungi of virgin and cultivated soil of Salhiah Desert, Egypt. Zentralbl Mikrobiol 145(7):547–551

    Article  CAS  PubMed  Google Scholar 

  • Elmeleigy MA, Hoseiny EN, Ahmed SA, Alhoseiny AM (2010) Isolation, identification, morphogenesis and ultrastructure of obligate halophilic fungi. J Appl Sci Environ Sanit 5:201–202

    Google Scholar 

  • El-Nasser NHA, Helmy SM, El-Gammal AA (1997) Formation of enzymes by biodegradation of agricultural wastes with white rot fungi. Polym Degrad Stab 55:249–255

    Article  Google Scholar 

  • El-Said AHM, Saleem A (2008) Ecological and physiological studies on soil fungi at western region, Libya. Mycobiology 36(1):1–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Sharouny HMM, Moubasher AH, Nassar MS (1988) Mycoflora associated with dry dates in upper Egypt II. Osmophilic fungi and test of osmophilic ability. Qatar Univ Sci Bull 8:59–68

    Google Scholar 

  • Evans BS, Robinson SJ, Kelleher NL (2011) Surveys of non-ribosomal peptide and polyketide assembly lines in fungi and prospects for their analysis in vitro and in vivo. Fungal Genet Biol 48:49–61

    Article  CAS  PubMed  Google Scholar 

  • Eyberger L, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podo-phyllotoxin. J Nat Prod 69:1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Ezzouhri L, Castro E, Moya M, Espinola F, Lairini K (2009) Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco. Afr J Microbiol Res 3:35–48

    CAS  Google Scholar 

  • Fábio A, Barros P, Filho ER (2005) Four spiroquinazoline alkaloids from Eupenicillium sp. isolated as an endophytic fungus from leaves of Murraya paniculata (Rutaceae). Biochem Syst Ecol 33:257–268

    Article  Google Scholar 

  • Fackler K, Gradinger C, Hinterstoisser B, Messner K, Schwanninger M (2006) Lignin degradation by white rot fungi on spruce wood shavings during short-time solid-state fermentations monitored by near infrared spectroscopy. Enzym Microb Technol 39:1476–1483

    Article  CAS  Google Scholar 

  • Fadl-Allah EM, Sayed OH (1991) Proline accumulation and osmoregulation in Aspergillus melleus. Bull Fac Sci Assiut Univ 20:207–215

    Google Scholar 

  • Fais A, Corda M, Era B, Fadda MB, Matos MJ, Santana L et al (2009) Tyrosinase inhibitor activity of coumarin-resveratrol hybrids. Molecules 14:2514–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Hassan M, Gull F (2015) Mycobial deterioration of stone monuments of Dharmarajika, Taxila. J Microbiol Exp 2(1):00036. https://doi.org/10.15406/jmen.2015.02.00036

    Article  Google Scholar 

  • Fill TP, Pereira GK, Geris Dos Santos RM, Rodrigues-Fo E (2007) Four additional meroterpenes produced by Penicillium sp. found in association with Melia azedarach. Possible biosynthetic intermediates to Austin. Z Naturforsch 62b:1035–1044

    Article  Google Scholar 

  • Francis F, Druart F, Mavungu JDD, De Boevre M, De Saeger S, Delvigne F (2020) Biofilm mode of cultivation leads to an improvement of the entomotoxic patterns of two Aspergillus species. Microorganisms 8(5):705

    Article  CAS  PubMed Central  Google Scholar 

  • Frank M, Niemann H, Böhler P, Stork B, Wesselborg S, Lin W et al (2015) Phomoxanthone A-from mangrove forests to anticancer therapy. Curr Med Chem 22(30):3523–3532

    Article  CAS  PubMed  Google Scholar 

  • Frank K, Brückner A, Hilpert A, Heethoff M, Blüthgen N (2017) Nutrient quality of vertebrate dung as a diet for dung beetles. Sci Rep 7:12147

    Article  Google Scholar 

  • Frank K, Brückner A, Blüthgen N et al (2018) In search of cues: dung beetle attraction and the significance of volatile composition of dung. Chemoecology 28:145–152. https://doi.org/10.1007/s00049-018-0266-4

    Article  CAS  Google Scholar 

  • Gabriel CR, Northup DE (2013) Microbial ecology: caves as an extreme habitat. Cave microbiomes: a novel resource for drug discovery. Springer, New York, pp 85–108

    Book  Google Scholar 

  • Gadanho M, Sampaio JP (2009) Cryptococcus ibericus sp. nov., Cryptococcus aciditolerans sp. nov. and Cryptococcus metallitolerans sp. nov., a new ecoclade of anamorphic basidiomycetous yeast species from an extreme environment associated with acid rock drainage in Sao Domingos pyrite mine, Portugal. Int J Syst Evol Microbiol 59:2375–2379

    Google Scholar 

  • Gadanho M, Libkind D, Sampaio JP (2006) Yeast diversity in the extreme acidic environments of the Iberian Pyrite Belt. Microb Ecol 2:552–563

    Article  Google Scholar 

  • Gangadevi V, Muthumary J (2008) Isolation of Colletotrichum gloeosporioides, a novel endophytic taxol-producing fungus from the leaves of a medicinal plant, Justicia gendarussa. Mycol Balc 5:1–4

    Google Scholar 

  • Gao M, Glenn AE, Gu X, Mitchell TR, Satterlee T, Duke MV et al (2020) Pyrrocidine, a molecular off switch for fumonisin biosynthesis. PLoS Pathog 16(7):e1008595. https://doi.org/10.1371/journal.ppat.1008595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geerlings A, Redondo FJ, Contin A, Memelink J, van der Heijden R, Verpoorte R (2001) Biotransformation of tryptamine and secologanin into plant terpenoid indole alkaloids by transgenic yeast. Appl Microbiol Biotechnol 56:420–424

    Article  CAS  PubMed  Google Scholar 

  • Geris dos Santos RM, Rodrigues-Fo E (2002) Meroterpenes from Penicillium sp. found in association with Melia azedarach. Phytochemistry 61:907–912

    Article  CAS  PubMed  Google Scholar 

  • Ginns JH (1974) Rhizina root rot: severity and distribution in British Columbia. Can J For Res 4: 143–146

    Google Scholar 

  • Goodell B (2003) Brown-rot fungal degradation of wood: our evolving view. In: Goodell B, Nicholas DD, Schultz TP (eds) Wood deterioration and preservation, ACS Symposium series, vol 845. ACS, Washington DC, pp 97–118

    Chapter  Google Scholar 

  • Goodell B, Jellison J, Liu J, Daniel G, Paszczynski A, Fekete F et al (1997) Low molecular weight chelators and phenolic compounds isolated from wood decay fungi and their role in the fungal biodegradation of wood. J Biotechnol 53:133–162

    Article  CAS  Google Scholar 

  • Gopal B, Chauhan M (2006) Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquat Sci 68(3):338–354

    Article  Google Scholar 

  • Gorbushina A, Krumbein WE, Panina L, Soukharjevsky S, Wollenzien U, Hamann KH (1993) On the role of black fungi in colour change and biodeterioration of antique marbles. Geomicrobiol J 11:205–221

    Article  Google Scholar 

  • Gori K, Sørensen LM, Petersen MA, Jespersen L, Arneborg N (2012) Debaryomyces hansenii strains differ in their production of flavor compounds in a cheese-surface model. Microbiol Open 1(2):161–168

    Google Scholar 

  • Goto S, Ano R, Sugiyama J, Horikoshi K (1981) Exophiala alcalophila, a new black yeast-like hyphomycete with an accompanying Phaeococcomyces alcalophilus morph, and its physiological characteristics. Trans Mycol Soc Jpn 22:429–439

    Google Scholar 

  • Gounot AM (1986) Psychrophilic and psychrotrophic microorganisms. Experientia 42:1192–1197

    Article  CAS  PubMed  Google Scholar 

  • Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond B 359:1249–1267

    Article  CAS  Google Scholar 

  • Grant WD, Mwatha WE, Jones BE (1990) Alkaliphiles: ecology, diversity and applications. FEMS Microbiol Rev 75:255–270

    Article  CAS  Google Scholar 

  • Green F, Highley TL (1997) Mechanism for brown-rot decay: paradigm or paradox 1. Int Biodeterior Biodegrad 39:113–124

    Article  CAS  Google Scholar 

  • Greene AD, Patel BKC, Sheehy AJ (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509

    Article  CAS  PubMed  Google Scholar 

  • Gross S, Robbins EI (2000) Acidophilic and acid-tolerant fungi and yeasts. Hydrobiologia 433:91–109

    Article  Google Scholar 

  • Grove JF (1985) Metabolic products of Phomopsis oblonga, Part 2. Phomopsolide A and B, tiglic esters of two 6-substituted 5,6-dihydro-5-hydroxypyran-2-ones. J Chem Soc Perkin Trans 1:865–869

    Article  Google Scholar 

  • Grum-Grzhimaylo AA, Georgieva ML, Bondarenko SA, Debets AJM, Bilanenko EN (2016) On the diversity of fungi from soda soils. Fungal Divers 76:27–74

    Article  Google Scholar 

  • Guijarro B, Larena I, Melgarejo P, De Cal A (2017) Adaptive conditions and safety of the application of Penicillium frequentans as a biocontrol agent on stone fruit. Int J Food Microbiol 254:25–35. https://doi.org/10.1016/j.ijfoodmicro.2017.05.004

    Article  PubMed  Google Scholar 

  • Guiraud P, Steiman R, Seigle-Murandi F, Sage L (1995) Mycoflora of soil around the Dead Sea II—Deuteromycetes (except Aspergillus and Penicillium). Syst Appl Microbiol 18:318–322

    Article  Google Scholar 

  • Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitas A (2000). Hypersaline waters in salenters-Naturals ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240

    Google Scholar 

  • Gunde-cimerman N, Ramos J, Plemenitas A 2009. Halotolerant and halophilic fungi mycological research 113.1231–1241

    Google Scholar 

  • Guo B, Dai JR, Ng S, Huang Y, Leong C, Ong W, Carte BK (2000) Cytonic acids A & B: novel tridepside inhibitors of h CMV protease from the endophytic fungus Cytonaema species. J Nat Prod 63:602–604

    Article  CAS  PubMed  Google Scholar 

  • Guo BH, Wang YC, Zhou XW, Hu K, Tan F, Miao ZQ, Tang KX (2006) An endophytic taxol producing fungus BT2 isolated from Taxus chinensis var. mairei. Afr J Biotechnol 5:875–877

    CAS  Google Scholar 

  • Haase G, Sonntag L, Melzer-Krick B, de Hoog GS (1999) Phylogenetic inference by SSU-gene analysis of members of the Herpotrichiellaceae with special reference to human pathogenic species. Stud Mycol 43:80–97

    Google Scholar 

  • Hakala TK, Maijala P, Konn J, Hatakka A (2004) Evaluation of novel wood-rotting polypores and corticioid fungi for the decay and biopulping of norway spruce (Piceaabies) wood. Enzym Microb Technol 34:255–263

    Article  CAS  Google Scholar 

  • Hallberg KB, González-Toril E, Johnson KB (2010) Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14:9–19

    Article  CAS  PubMed  Google Scholar 

  • Hamada N, Yamada A (1991) Seasonal changes in the fungal flora of house dust. Trans Mycol Soc Jpn 32:45–53

    Google Scholar 

  • Harper JK, Arif AM, Ford EJ, Strobel GA, Tomer DP, Grant DM, Porco J, Oneill K (2003) Pestacin: a 1,3-dihydroisobenzofuran from Pestalotiopsis microspora possessing antioxidant and antimycotic activities. Tetrahedron 59:2471–2476

    Article  CAS  Google Scholar 

  • Harrigan G, Armentrout BL, Gloer JB, Shearer CA (1995) Anguillosporal, a new antibacterial and antifungal metabolite from the freshwater fungus Anguillospora longissima. J Nat Prod 58:1467–1469

    Article  CAS  PubMed  Google Scholar 

  • Hasija SK (1994) Biodegradation by aquatic fungi. Presented at the Fifth International Mycological Congress, 14–21, Vancouver, BC, Canada

    Google Scholar 

  • Hassan N, Rafiq M, Hayat M, Shah AA, Hasan F (2016) Psychrophilic and psychrotrophic fungi: a comprehensive review. Rev Environ Sci Biotechnol 15:147–172. https://doi.org/10.1007/s11157-016-9395-9

    Article  Google Scholar 

  • Hatakka AI (1994) Lignin-modifying enzymes from selected white-rot fungi – production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    Article  CAS  Google Scholar 

  • Hatakka AI (2001) Biodegradation of lignin. In: Hofrichter M, Steinbuchel A (eds) Biopolymers. Lignin, humic substances and coal. Wiley-VCH, Weinheim, Germany, pp 129–180

    Google Scholar 

  • Hatakka A, Hammel KE (2010) Fungal biodegradation of lignocelluloses. In: Hofrichter M (ed) Industrial applications, The mycota, vol X, 2nd edn. Springer, Berlin, pp 319–340

    Google Scholar 

  • Hawkins KM, Smolke CD (2008) Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat Chem Biol 4:564–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol Res 95:641–655

    Article  Google Scholar 

  • He L, Liu J, Qin S, Yu J, Sun M (2011) Identification of an astaxanthin-producing marine yeast strain YS-185 and optimization of its fermentation conditions. Prog Fish Sci 32(4):93–101

    Google Scholar 

  • Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW (2007) Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology 153(6):1677–1692. https://doi.org/10.1099/mic.0.2007/007641-0

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Carlos B, Gamboa-Angulo MM (2011) Metabolites from freshwater aquatic microalgae and fungi as potential natural pesticides. Phytochem Rev 10(2):261–286

    Article  Google Scholar 

  • Higuchi T (1990) Lignin biochemistry: biosynthesis and biodegradation. Wood Sci Technol 24:23–63

    Article  CAS  Google Scholar 

  • Hildén K, Hakala TK, Maijala P, Lundell TK, Hatakka A (2007) Novel thermotolerant laccases produced by the white-rot fungus Physisporinus rivulosus. Appl Microbiol Biotechnol 77:301–309

    Article  PubMed  Google Scholar 

  • Hilden KS, Bortfeldt R, Hofrichter M, Hatakka A, Lundell TK (2008) Molecular characterization of the basidiomycete isolate Nematoloma frowardii b19 and its manganese peroxidase places the fungus in the corticioid genus Phlebia. Microbiology 154:2371–2379

    Article  CAS  PubMed  Google Scholar 

  • Hocking AD (1993) Responses of xerophilic fungi to changes in water activity. In: Jennings DH (ed) Stress tolerance of fungi. Marcel Dekker, New York, pp 233–256

    Google Scholar 

  • Hocking AD, Pitt JI (1979) Water relations of some Penicillium species at 258°C. Trans Br Mycol Soc 73:141–145

    Article  Google Scholar 

  • Hoffman CS, Wood V, Fantes PA (2015) An ancient yeast for young geneticists: a primer on the Schizosaccharomyces pombe model system. Genetics 201(2):403–423. https://doi.org/10.1534/genetics.115.181503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmeister D, Keller NP (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24:393–416

    Article  CAS  PubMed  Google Scholar 

  • Hormazabal E, Schmeda-Hirschmann G, Astudillo L, Rodriguez J, Theoduloz C (2005) Metabolites from Microsphae-ropsisolivacea, an endophytic fungus of Pilgerodendronuviferum. Z Naturforsch C 60:11–21

    Article  CAS  PubMed  Google Scholar 

  • Hoshino T, Matsumoto N (2012) Cryophilic fungi to denote fungi in the cryosphere. Fungal Biol Rev 26:102–105

    Article  Google Scholar 

  • Hoshino F, Kajino T, Sugiyama H, Asami O, Takahashi H (2002) Thermally stable and hydrogen peroxide tolerant manganese peroxidase (MnP) from Lenzites betulinus. FEBS Lett 530:249–252

    Article  CAS  PubMed  Google Scholar 

  • Hsiang T, Matsumoto N, Millett S (1999) Biology and managemen of Typhula snow molds of turfgrass. Plant Dis 83:788–798

    Article  PubMed  Google Scholar 

  • Huamán A, Béjar V, Sáez G, Guevara J, Sevilla R, Tapia M et al (2018) Cryptococcus neoformans en heces de palomas (Columba livia) en Lima Metropolitana. Revista Medica Herediana 29(2):85

    Article  Google Scholar 

  • Huang WY, Cai YZ, Xing J, Corke H, Sun M (2007) Potential antioxidant resource: endophytic fungi isolated from traditional Chinese medicinal plants. Econ Bot 61:14–30

    Article  CAS  Google Scholar 

  • Huţanaşu C, Sfarti C, Trifan A et al (2011) High levels of sterigmatocystin in patients with chronic liver diseases. Rev Med Chir Soc Med Nat Iasi 115(1):33–37

    PubMed  Google Scholar 

  • Hyde KD, Jones EBG, Leano E, Pointing SB, Poonyth AD, Vrijmoed LLP (1998) Role of fungi in marine ecosystems. Biodivers Conserv 7:1147–1161

    Article  Google Scholar 

  • Hyde KD, Soytong K 2007 Understanding microfungi diversity - acirtique, cryptogamie, mycologie 28(4):281–289

    Google Scholar 

  • Immanuel G, Bhagavath C, Iyappa Raj P, Esakkiraj P, Palavesam A (2009) Production and partial purification of cellulase by Aspergillus niger and A. fumigates fermented in coir waste and sawdust. Int J Microbiol 3(1):1–11

    Google Scholar 

  • Inoue M (1988) The study of fungal contamination in the field of electronics. Biodeterioration 4:580–584

    Article  Google Scholar 

  • Iram S, Ahmad I, Javed B, Yaqoob S, Akhtar K, Kazmi MR et al (2009) Fungal tolerance to heavy metals. Pak J Bot 41:2583–2594

    Google Scholar 

  • Isaka M, Suyarnsestakorn C, Tanticharoen M (2002) Aigialomycins A–E, new resorcylic macrolides from the marine mangrove fungus Aigialus parvus. J Org Chem 67:1561–1566

    Article  CAS  PubMed  Google Scholar 

  • Jadulco RC, Koch M, Kakule TB, Schmidt EW, Orendt A, He H et al (2014) Isolation of pyrrolocins A–C: cis- and trans-decalin tetramic acid antibiotics from an endophytic fungal-derived pathway. J Nat Prod 77:2537–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain A, Jain R, Jain S (2020) Isolation of coprophilous fungi (moist chamber method). In: Basic techniques in biochemistry, microbiology and molecular biology, Springer protocols handbooks. Humana, New York. https://doi.org/10.1007/978-1-4939-9861-6_32

    Chapter  Google Scholar 

  • Jalgaonwalal RE, Mohite BV, Mahajan RT (2011) Evaluation of endophytes for their antimicrobial activity. Afr J Biotechnol 10:103–107

    Google Scholar 

  • Jančič S, Frisvad JC, Kocev D, Gostinčar C, Džeroski S, Gunde-Cimerman N (2016) Producción de metabolitos secundarios en ambientes extremos: Wallemiaspp. Producen metabolitos tóxicos en condiciones hipersalinas. PLoS One 11(12):e0169116

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansson JK, Hofmockel KS (2020) Soil microbiomes and climate change. Nat Rev Microbiol 18(1):35–46

    Article  CAS  PubMed  Google Scholar 

  • Järvinen J, Taskila S, Isomäki R, Ojamo H (2012) Screening of white-rot fungi manganese peroxidases: a comparison between the specific activities of the enzyme from different native producers. AMB Express 2:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayaprakashvel M (2012) Therapeutically active biomolecules from marine actinomycetes. J Modern Biotechnol 1(1):1–7

    Google Scholar 

  • Jennings DH (1984) Polyol metabolism in fungi. Adv Microb Physiol 25:149–193

    Article  CAS  PubMed  Google Scholar 

  • Jiang JR, Cai L, Liu F (2017) Oligotrophic fungi from a carbonate cave, with three new species of Cephalotrichum. Mycology 8:1–14. https://doi.org/10.1080/21501203.2017.1366370

    Article  CAS  Google Scholar 

  • Jiao P, Gloer JB, Campbell J, Shearer CA (2006) Altenuene derivatives from an unidentified freshwater fungus in the family Tubeufiaceae. J Nat Prod 69:612–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson DB (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microb Ecol 27:307–317

    Article  CAS  Google Scholar 

  • Jones EBG (2000) Marine fungi: some factors influencing biodiversity. Fungal Divers 4(193):53–73

    Google Scholar 

  • Jones EBG (2011) Are there more marine fungi to be described? Bot Mar 54(4):343–354

    Article  Google Scholar 

  • Jones EBG, Alias SA (1997) Diversity of mangrove fungi. In: Hyde KD (ed) Diversity of tropical microfungi. Hong Kong University Press, Hong Kong, pp 71–91

    Google Scholar 

  • Jones EBG, Mitchell JL (1996) Biodiversity of marine fungi. In: Cimerman A, Gunde-Cimerman N (eds) Biodiversity: international biodiversity seminar. National Institute of Chemistry and Slovenia National Commission for UNESCO, Ljubljana, Slovenia, pp 31–42

    Google Scholar 

  • Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL (2009) Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Divers 35(1):187

    Google Scholar 

  • Joshi BK, Gloer JB, Wicklow DT (2002) Bioactive natural products from a sclerotium-colonizing isolate of Humicola fuscoatra. J Nat Prod 65(11):1734–1737. https://doi.org/10.1021/np020295p

    Article  CAS  PubMed  Google Scholar 

  • Joshi PK, Swarup A, Maheshwari S, Kumar R, Singh N (2011) Bioremediation of heavy metals in liquid media through fungi isolated from contaminated sources. Indian J Microbiol 51:482–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamat S, Gaikwad S, Kumar RA, Gade WN (2013) Xylitol production by Cyberlindnera (Williopsis) saturnus, a tropical mangrove yeast from xylose and corn cob hydrolysate. J Appl Microbiol 115(6):1357–1367

    Article  CAS  PubMed  Google Scholar 

  • Kantharaj P, Boobalan B, Sooriamuthu S, Mani R (2017) Lignocellulose degrading enzymes from fungi and their industrial applications. Int J Curr Res 9(21):1–12

    CAS  Google Scholar 

  • Kashif A, Naz S, Ayub A (2018) Characterization of invertase and alpha amylase from two fungal species, Penicillium lilacinum and Aspergillus niger. Int J Biol Biotechnol 15(2):351–355

    Google Scholar 

  • Kathiresan K, Saravanakumar K, Senthilraja PAGS (2011) Producción de bioetanol por levaduras marinas aisladas de sedimentos de manglares costeros. Int Multidiscip Res J 1:19–24

    CAS  Google Scholar 

  • Kaur B, Sy B, Phutela U (2015) Production of cellulases from Humicola fuscoatra MTCC 1409: role of enzymes in the digestion of rice straw. Afr J Res Microbiol 9(9):631–638

    Article  CAS  Google Scholar 

  • Kavya V, Padmavathi T (2009) Optimization of growth conditions for xylanase production by Aspergillus niger in solid state fermentation. Pol J Microbiol 58:125–130

    CAS  PubMed  Google Scholar 

  • Kealey JT, Liu L, Santi DV, Betlach MC, Barr PJ (1998) Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic host. Proc Natl Acad Sci U S A 95:505–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kis-Papo T, Grishkan I, Oren A, Wasser SP, Nevo E (2003) Survival of filamentous fungi in hypersaline Dead Sea water. Microb Ecol 45:183–190

    Article  CAS  PubMed  Google Scholar 

  • Klich M, Mendoza C, Mullaney E, Keller N, Bennett JW (2001) A new sterigmatocystin-producing Emericella variant from agricultural desert soils. Syst Appl Microbiol 24(1):131–138. https://doi.org/10.1078/0723-2020-00007

    Article  CAS  PubMed  Google Scholar 

  • Kluczek-Turpeinen B, Tuomela M, Hatakka A, Hofrichter M (2003) Lignin degradation in a compost environment by the deuteromycete Paecilomyces inflatus. Appl Microbiol Biotechnol 61:374–379

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi J, Tsuda M (2004) Bioactive products from Okinawan marine micro and macroorganisms. Phytochem Rev 3:267–274

    Article  CAS  Google Scholar 

  • Kogej T, Gostinčar C, Volkmann M, Gorbushina AA, Gunde-Cimerman N (2006) Mycosporines in extremophilic fungi-novel complementary osmolytes? Environ Chem 3(2):105–110

    Article  CAS  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (2013) Marine mycology: the higher fungi. Elsevier, Amsterdam

    Google Scholar 

  • Koopman F, Beekwilder J, Crimi B, van Houwelingen A, Hall RD, Bosch D et al (2012) De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb Cell Factories 11:155. https://doi.org/10.1186/1475-2859-11-155

    Article  CAS  Google Scholar 

  • Kour D, Rana KL, Kaur T, Singh B, Chauhan VS, Kumar A et al (2019a) Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. In: Molina G, Gupta VK, Singh B, Gathergood N (eds) Bioprocessing for biomolecules production, pp 321–372. https://doi.org/10.1002/9781119434436.ch16

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019b) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for value-added products and environments, vol 2. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kour D, Kaur T, Devi R, Yadav A, Singh M, Joshi D et al (2021) Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environ Sci Pollut Res 28:24917–24939. https://doi.org/10.1007/s11356-021-13252-7

    Article  CAS  Google Scholar 

  • Kracher D, Ludwig R (2016) Cellobiose dehydrogenase: an essential enzyme for lignocellulose degradation in nature. J Land Manag Food Environ 67:145–163

    Google Scholar 

  • Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF et al (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113:71–88

    Article  Google Scholar 

  • Krug JC, Benny GL, Keller HW (2004) Coprophilous fungi. In: Mueller G, Bills GF, Foster MS (eds) Biodiversity of fungi, inventory and monitoring methods. Elsevier Academic, London, pp 467–499

    Chapter  Google Scholar 

  • Kshirsagar AD, Gunale VR (2011) Pollution status of river Mula (Pune city) Maharashtra, India. J Ecophysiol Occup Health 11(1/2):81

    CAS  Google Scholar 

  • Kshirsagar AD, Ahire ML, Gunale VR (2012) Phytoplankton diversity related to pollution from Mula River at Pune city. Terrest Aquat Environ Toxicol 6(2):136–142

    Google Scholar 

  • Kuhad RC, Singh A, Eriksson K-E (1997) Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv Biochem Eng Biotechnol 57:45–125

    CAS  PubMed  Google Scholar 

  • Kumar M, Yadav AN, Tiwari R, Prasanna R, Saxena AK (2014) Deciphering the diversity of culturable thermotolerant bacteria from Manikaran hot springs. Ann Microbiol 64:741–751

    Article  CAS  Google Scholar 

  • Kumar A, Prajapati S, Nikhil S, Neogi TG (2019a) Industrially important pigments from different groups of fungi. In: Recent advancement in white biotechnology through fungi. Springer, Cham, pp 285–301

    Chapter  Google Scholar 

  • Kumar A, Chaturvedi AK, Yadav K, Arunkumar KP, Malyan SK, Raja P et al (2019b) Fungal phytoremediation of heavy metal-contaminated resources: current scenario and future prospects. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for sustainable environments, vol 3. Springer, Cham, pp 437–461. https://doi.org/10.1007/978-3-030-25506-0_18

    Chapter  Google Scholar 

  • Kumar A, Yadav AN, Mondal R, Kour D, Subrahmanyam G, Shabnam AA et al (2021) Myco-remediation: a mechanistic understanding of contaminants alleviation from natural environment and future prospect. Chemosphere 284:131325. https://doi.org/10.1016/j.chemosphere.2021.131325

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP, Piškur J (2006) Taxonomy and phylogenetic diversity among the yeasts. In: Sunnerhagen P, Piskur J (eds) Comparative genomics: using Fungi as models. Springer, Berlin, pp 29–46

    Chapter  Google Scholar 

  • Kusari S, Zühlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7

    Article  CAS  PubMed  Google Scholar 

  • Kuzmina L, Galimzianova N, Abdullin S, Ryabova A (2012) Microbiota of the Kinderlinskaya cave (South Urals, Russia). Microbiology 81(2):251–258

    Article  CAS  Google Scholar 

  • Lajili S, Azouaou SA, Turki M, Muller CD, Bouraoui A (2016) Antiinflammatory, analgesic activities and gastro-protective effects of the phenolic contents of the red alga, Laurencia obtusa. Eur J Integr Med 8(3):298–306. https://doi.org/10.1016/j.eujim.2015.12.006

    Article  Google Scholar 

  • Lankinen VP, Bonnen AM, Anton LH, Wood DA, Kalkkinen N, Hatakka A et al (2001) Characteristics and N-terminal amino acid sequence of manganese peroxidase from solid substrate cultures of Agaricus bisporus. Appl Microbiol Biotechnol 55:170–176

    Article  CAS  PubMed  Google Scholar 

  • Laxmipriya P, Yugal KM, Sujogya KP (2013) Endophytic fungi with great promises: a review. J Adv Pharm Educ Res 3(3):152–170

    Google Scholar 

  • Lazaro JE, Hyde KD (2001) Fungal diversity research series 6:93–129

    Google Scholar 

  • Lee JC, Strobel GA, Lobkovsky E, Clardy J (1996) Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus Pestalotiopsis microspora. J Org Chem 61:3232–3233

    Article  CAS  Google Scholar 

  • Lee S, Ha JK, Kang HS, McAllister T, Cheng KJ (1997) Overview of energy metabolism, substrate utilization and fermentation characteristics of ruminal anaerobic fungi Korean. J Anim Nutr Feedstuffs 21:295–314

    Google Scholar 

  • Lee SJ, Lee SY, Chung MS, Hur SJ (2016) Development of novel in vitro human digestion systems for screening the bioavailability and digestibility of foods. J Funct Foods 22:113–121. https://doi.org/10.1016/j.jff.2016.01.005

    Article  CAS  Google Scholar 

  • Lehr NA, Meffert A, Antelo L, Sterner O, Anke H, Weber RW (2006) Antiamoebins, myrocin B and the basis of antifungal antibiosis in the coprophilous fungus Stilbella erythrocephala (syn. S. fimetaria). FEMS Microbiol Ecol 55:105–112

    Article  CAS  PubMed  Google Scholar 

  • Li X, Kondo R, Sakai K (2002) Biodegradation of sugarcane bagasse with marine fugus phlebia sp. MG-60. J Wood Sci 48:159–162

    Article  Google Scholar 

  • Li X, Kondo R, Sakai K (2003) Studies on hypersaline-tolerant white-rot fungi IV: Effects of Mn and NH4 on manganese peroxidase production and Roly R-478 decolorization by the marine isolate phlebia sp. MG-60 under saline conditions. J Wood Sci 49:355–360

    Article  CAS  Google Scholar 

  • Li X, Kim MK, Lee U, Kim SK, Kang JS, Choi HD et al (2005) Myrothenones A and B, cyclopentenone derivatives with tyrosinase inhibitory activity from the marine-derived fungus Myrothecium sp. Chem Pharm Bull 53(4):453–455

    Article  CAS  Google Scholar 

  • Li E, Jiang L, Guo L, Zhang H, Che Y (2008) Pestalachlorides A–C, antifungal metabolites from the plant endophytic fungus Pestalotiopsis adusta. Bioorg Med Chem 16:7894–7899

    Article  CAS  Google Scholar 

  • Li LQ, Yang YG, Zeng Y, Zou C, Zhao PJ (2010) A new Azaphilone, Kasanosin C, from an endophytic Talaromyces sp. T1BF. Molecules 15:3993–3997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li DC, Li AN, Papageorgiou AC (2011) Cellulases from thermophilic fungi: recent insights and biotechnological potential. Enzym Res 2011:308730

    Article  Google Scholar 

  • Lisov AV, Leontievsky AA, Golovleva LA (2003) Hybrid Mn-peroxidase from the ligninolytic fungus Panus tigrinus 8/18. Isolation, substrate specificity, and catalytic cycle. Biochem Mosc 68:1027–1035

    Article  CAS  Google Scholar 

  • Liu X, Dong M, Chen X, Jiang M, Lv X, Zhou J (2008) Antimicrobial activity of an endophytic Xylaria sp. YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl Microbiol Biotechnol 78:241–247

    Article  CAS  PubMed  Google Scholar 

  • Liu XY, Chi Z, Liu GL, Madzak C, Chi ZM (2013) Both decrease in ACL1 gene expression and increase in ICL1 gene expression in marine-derived yeast Yarrowia lipolytica expressing INU1 gene enhance citric acid production from inulin. Mar Biotechnol 15(1):26–36

    Article  CAS  Google Scholar 

  • Liu Y, Stuhldreier F, Kurtán T, Mándi A, Arumugam S, Lin W et al (2017) Daldinone derivatives from the mangrove-derived endophytic fungus Annulohypoxylon sp. RSC Adv 7(9):5381–5393

    Article  CAS  Google Scholar 

  • Lobarzewski J (1990) The characteristics and functions of the peroxidases from Trametes versicolor in lignin biotransformation. J Biotechnol 13(2–3):111–117

    Article  CAS  Google Scholar 

  • Lundell T, Makela M, Hilden K (2010) Lignin-modifying enzymes in filamentous basidiomycetes: ecological, functional and phylogenetic review. J Basic Microbiol 50:1–16

    Article  Google Scholar 

  • Magan N (2007) Fungi in extreme environments. In: Kubicek CP, Druzhinina IS (eds) Environmental and microbial relationships, The mycota IV, 2nd edn. Springer, Berlin, pp 85–103

    Google Scholar 

  • Magan N, Lacey J (1984a) Effect of temperature and pH on water relations of field and storage fungi. Trans Br Mycol Soc 82:71–81

    Article  Google Scholar 

  • Magan N, Lacey J (1984b) Effect of water activity, temperature and substrate on interactions between field and storage fungi. Trans Br Mycol Soc 82:83–93

    Article  Google Scholar 

  • Mahé S, Rédou V, Calvez TL, Vandenkoornhuyse P, Burgaud G (2013) Fungi in deep-sea environments and metagenomics. In: Martin F (ed) The ecological genomics of fungi. Wiley., Hoboken, NJ, pp 325–354

    Chapter  Google Scholar 

  • Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond JB, Cowan DA (2015) Ecología microbiana de los sistemas edáficos del desierto caliente. FEMS Microbiol Rev 39(2):203–221

    Article  CAS  PubMed  Google Scholar 

  • Martin JF (2000) Molecular control of expression of penicillin biosynthesis genes in fungi: regulatory proteins interact with a bidirectional promoter region. J Bacteriol 182:2355–2362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin P, MacLeod RA (1984) Observations on the distinction between oligotrophic and eutrophic marine bacteria. Appl Environ Microbiol 47:1017–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinelli L, Zalar P, Gunde-Cimerman N, Azua-Bustos A, Sterflinger K, Piñar G (2017) Aspergillus atacamensis and A. salisburgensis: two new halophilic species from hypersaline arid habitats with a phialosimplex-like morphology. Extremophiles 21(4):755–773

    Article  CAS  PubMed  Google Scholar 

  • Martínez AT, Speranza M, Ruiz-Dueñas FJ, Ferreira P, Camarero S, Guillén F et al (2005) Biodegradation of lignocellulosics: microbiological, chemical and enzymatic aspects of fungal attack to lignin. Int Microbiol 8:195–204

    PubMed  Google Scholar 

  • Mehta D, Satyanarayana T (2013) Diversity of hot environments and thermophilic microbes. In: Satyanarayana T, Satyanarayana T, Littlechild J, Kawarabayasi Y (eds) Thermophilic microbes in environmental and industrial biotechnology: biotechnology of thermophiles. Springer Science + Business Media, Dordrecht, pp 3–60

    Chapter  Google Scholar 

  • Melo RFR, Chikowski RS, Miller AN, Maia LC (2016) Coprophilous Agaricales (Agaricomycetes, Basidiomycota) from Brazil. Phytotaxa 266(1):001–014. https://doi.org/10.11646/phytotaxa.266.1.1

    Article  Google Scholar 

  • Menedez E, Garcia-Fraile P, Rivas R (2015) Biotechnological applications of bacterial cellulases. AIMS Bioeng 2:163–182

    Article  Google Scholar 

  • Meng LH, Zhang P, Li XM, Wang BG (2015) Penicibrocazines A–E, five new sulfide diketopiperazines from the marine-derived endophytic fungus Penicillium brocae. Mar Drugs 13(1):276–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mensah JK, Kwoseh C, Akuoko Y, Ali RB, Tawiah S, Anamoah C et al (2016) Assessment of the antimicrobial and antioxidant activities of the secondary metabolites produced by pure cultured Curvularialunata, Aspergillus parasiticus and Mucor spp. Curr Sci Perspect 2(4):95–104

    Google Scholar 

  • Mesa V, Gallego JL, González-Gil R, Lauga B, Sánchez J, Méndez-García C et al (2017) Bacterial, archaeal, and eukaryotic diversity across distinct microhabitats in an acid mine drainage. Front Microbiol 8:1756

    Article  PubMed  PubMed Central  Google Scholar 

  • Meshram V, Saxena S, Paul K (2016) Xylarinase: a novel clot busting enzyme from an endophytic fungus Xylariacurta. J Enzym Inhib Med Chem 31:1–10

    Article  Google Scholar 

  • Messner K, Fackler K, Lamaipis P, Gindl W, Srebotnik E, Watanabe T (2003) Overview of white-rot research: where we are today. In: Goodell B, Nicholas DD, Schultz TP (eds) Wood deterioration and preservation. ACS, Washington DC, pp 73–96

    Chapter  Google Scholar 

  • Milagres AM, Sales RM (2001) Evaluating the basidiomycetes Pariamedula-panis and Woljiporia cocos for xylanase production. Enzym Microb Technol 28:522–526

    Article  CAS  Google Scholar 

  • Milala M, Shugaba A, Gidado A, Ene A, Wafar J (2005) Studies on the use of agricultural wastes for cellulase enzyme production by Aspergillus niger. Res J Agric Biol Sci 1:325–328

    Google Scholar 

  • Moreno G, Alvarado P, Manjón JL (2014) Hypogeous desert fungi. In: Desert truffles. Springer, Berlin, pp 3–20

    Chapter  Google Scholar 

  • Moubasher AH, Abdel-Hafez SII, Bagy MMK, Abdel-Sater MA (1990) Halophilic and halotolerant fungi in cultivated, desert and salt marsh soils from Egypt. Acta Mycol 27(2):65–81

    Article  Google Scholar 

  • Moubasher AAH, Ismail MA, Hussein NA, Gouda HA (2015) Osmophilic/osmotolerant and halophilic/halotolerant mycobiota of soil of Wadi El-Natrun region, Egypt. J Basic Appl Mycol (Egypt) 6:27–42

    Google Scholar 

  • Moubasher AAH, Ismail MA, Hussein NA, Gouda HA (2016) Enzyme producing capabilities of some extremophilic fungal strains isolated from different habitats of Wadi El-Natrun, Egypt. Part 2: Cellulase, xylanase and pectinase. Eur J Biol Res 6:103–111

    CAS  Google Scholar 

  • Mouchacca J (1995) Thermophilic fungi in desert soils: a neglected extreme environment. In: Allsopp D, Colwell RR, Hawksworth DL (eds) Microbial diversity and ecosystem function. CAB International, Wallingford, UK, pp 265–288

    Google Scholar 

  • Mouchacca J (1997) Thermophilic fungi: biodiversity and taxonomic status. Cryptogam Mycol 18:19–69

    Google Scholar 

  • Mouchacca J (2000) Thermotolerant fungi erroneously reported in applied research work as possessing thermophilic attributes. World J Microbiol Biotechnol 16:869–880

    Article  Google Scholar 

  • Moustafa AF, Al-Musallam AA (1975) Contribution to the funal flora of Kuwait. Trans Br Mycol Soc 65(3):547–553

    Article  Google Scholar 

  • Mowll JL, Gadd GM (1985) Effect of vehicular lead pollution on phylloplane mycoflora. Trans Br Mycol Soc 84:685–689

    Article  CAS  Google Scholar 

  • Mtui G, Nakamura Y (2004) Lignin–degrading enzymes from mycelial cultures of basidiomycetes fungi isolated in Tanzania. J Chem Eng Jpn 37(1):113–118

    Article  CAS  Google Scholar 

  • Mudur SV, Swenson DC, Gloer JB (2006) Heliconols A–C: antimicrobial hemiketals from the freshwater aquatic fungus Helicodendrongiganteum. Org Lett 8:3191–3194

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Horwitz BA, Kenerley CM (2012) Secondary metabolism in Trichoderma – a genomic perspective. Microbiology 158:35–45

    Article  CAS  PubMed  Google Scholar 

  • Murray PM, Moane S, Collins C, Beletskaya T, Thomas OP, Duarte AWF et al (2013) Sustainable production of biologically active molecules of marine based origin. New Biotechnol 30(6):839–850

    Article  CAS  Google Scholar 

  • Mutka SC, Bondi SM, Carney JR, Da Silva NA, Kealey JT (2006) Metabolic pathway engineering for complex polyketide biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res 6:40–47

    Article  CAS  PubMed  Google Scholar 

  • Nagai K, Suzuki K, Okada G (1998) Studies on the distribution of alkalophilic and alkali-tolerant soil fungi II: Fungal flora in two limestone caves in Japan. Mycoscience 39:293–298

    Article  CAS  Google Scholar 

  • Nair MSR, Carey ST (1980) Metabolites of pyrenomycetes XIII: structure of (+) hypothemycin, an antibiotic macrolide from Hypomyces trichothecoides. Tetrahedron Lett 21:2011–2012

    Article  CAS  Google Scholar 

  • Nam KH, Chung HJ, Jeon EJ, Park MK, Yim YH, Liu JR et al (2007) In vitro biosynthesis of strictosidine using Lonicera japonica leaf extracts and recombinant yeast. J Plant Biol 50:315–320

    Article  CAS  Google Scholar 

  • Naranjo-Briceno L, Perniam B, Guerra M (2013) Potential role of oxidative exoenzymes of the extremophilic fungus Pestalotiopsis palmarum BM-04 in biotransformation of extraheavy crude oil. Microb Biotechnol 6:720–730. https://doi.org/10.1111/1751-7915.12067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nazareth S, Gonsalves V (2014) Aspergillus penicillioides—a true halophile existing in hypersaline and polyhaline econiches. Ann Microbiol 64:397–402

    Article  Google Scholar 

  • Nazareth S, Gonsalves V, Nayak S (2012) A first record of obligate halophilic aspergilli from the Dead Sea. Indian J Microbiol 52:22–27

    Article  PubMed  Google Scholar 

  • Neifar M, Maktouf S, Ghorbel RE, Jaouani A, Cherif A (2015) Extremophiles as source of novel bioactive compounds with industrial potential. In: Gupta VK, Tuohy MG, O’Donovan A, Lohani M (eds) Biotechnology of bioactive compounds: sources and applications. Wiley, Hoboken, NJ, pp 245–268

    Google Scholar 

  • Nelson DL, Sturges DL (1982) A snowmold disease of mountain big sagebrush Artemisia tridentatavaseyana. Phytopathology 72:965

    Google Scholar 

  • Nigam PS (2009) Production of bioactive secondary metabolites. In: Nigam PS, Pandey A (eds) Biotechnology for agro-industrial residues utilization, 1st edn. Springer, Netherlands, pp 129–145

    Chapter  Google Scholar 

  • Niyonzima F, More S (2014) Purification and properties of detergent-compatible extracellular alkaline protease from Scopulariopsis spp. Prep Biochem Biotechnol 44(7):738–759

    Article  CAS  PubMed  Google Scholar 

  • Norred WP (1993) Fumonisins—mycotoxins produced by Fusarium moniliforme. J Toxicol Environ Health 38(3):309–328. https://doi.org/10.1080/15287399309531720

    Article  CAS  PubMed  Google Scholar 

  • Olagoke OA (2014) Amylase activities of some thermophilic fungi isolated from municipal solid wastes and palm-kernel stack. Am J Microbiol Biotechnol 1:64–70

    Google Scholar 

  • Oliveira LG, Dias LC, Rosso GB (2008) Total synthesis of crocacins A, C and D: new antibiotics isolated from Chondromycescrocatus and Chondromycespediculatus. Química Nova 31(4):854–871

    Article  Google Scholar 

  • Onofri S, de la Torre R, de Vera JP, Ott S, Zucconi L, Selbmann L et al (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12:508–516

    Article  PubMed  Google Scholar 

  • Owaid MN (2018) Bioecology and uses of the desert truffle (Pezizales) in the Middle East. Revista de Ciencia y Tecnología de Walailak (WJST) 15(3):179–188

    Google Scholar 

  • Ozaydin B, Burd H, Lee TS, Keasling JD (2012) Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production. Metab Eng 15:174–183

    Article  PubMed  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D et al (2013) High-level semisynthetic production of the potent antimalarial artemisinin. Nature 496:528–553

    Article  CAS  PubMed  Google Scholar 

  • Pallela R, Na-Young Y, Kim SK (2010) Anti-photoaging and photoprotective compounds derived from marine organisms. Mar Drugs 8(4):1189–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandit A, Maheshwari R (1996) Life-history of Neurospora intermedia in a sugar cane field. J Biosci 21:57–79

    Article  Google Scholar 

  • Park JH, Choi GJ, Lee HB, Kim KM, Jung HS, Lee SW et al (2005) Griseofulvin from Xylaria sp. strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotechnol 15:112–117

    CAS  Google Scholar 

  • Parte S, Sirisha V, D’Souza J (2017) Chapter four-Biotechnological applications of marine enzymes from algae, bacteria, fungi, and sponges. Adv Food Nutr Res 80:75–106

    Article  CAS  PubMed  Google Scholar 

  • Pedone-Bonfim MVL, da Silva FSB, Maia LC (2015) Production of secondary metabolites by mycorrhizal plants with medicinal or nutritional potential. Acta Physiol Plant 37:27

    Article  Google Scholar 

  • Pedro D, Ballester A, Munoz JA, Blazquez ML, Gonzalez F, Garcia C (2007) Dephosphoration of an iron ore by a filamentous fungus. Ouro Preto-MG 12(8):285–293

    Google Scholar 

  • Pejin B, Maja K (2017) Antitumor natural products of marine-derived fungi. In: Mérillon JM, Ramawat KG (eds) Fungal metabolites. Springer International Publishing, Cham, pp 1–28

    Google Scholar 

  • Petersen PM (1971) The macromycetes in a burnt forest area in Denmark. Botanisk Tiddskrift 66:228–248

    Google Scholar 

  • Peterson SW (2008) Phylogenetic analysis of Aspergillus species using DNA sequences from four loci. Mycologia 100:205–226

    Article  CAS  PubMed  Google Scholar 

  • Pettersson OV, Leong SL (2011) Fungal Xerophiles (Osmophiles). In: Enclyclopedia of life sciences. Wiley, Chichester, pp 1–12. https://doi.org/10.1002/9780470015902.a0000376.pub2

    Chapter  Google Scholar 

  • Picart P, Diaz P, Pastor FI (2007) Cellulases from two Penicillium sp. strains isolated from subtropical forest soil: production and characterization. Lett Appl Microbiol 45:108–113

    Article  CAS  PubMed  Google Scholar 

  • Pimentel MR, Molina G, Dionísio AP, Maróstica Junior MR, Pastore GM (2011) The use of endophytes to obtain bioactive compounds and their application in biotransformation process. Biotechnol Res Int 2011:576286. https://doi.org/10.4061/2011/576286

    Article  CAS  PubMed  Google Scholar 

  • Piontek K, Smith AT, Blodig W (2001) Lignin peroxidase structure and function. Biochem Soc Trans 29:111–116

    Article  CAS  PubMed  Google Scholar 

  • Pitt JI (1981) Food spoilage and biodeterioration. In: Cole GT, Kendrick B (eds) Biology of Conidial fungi. Academic, New York, pp 111–142

    Chapter  Google Scholar 

  • Poch GK, Gloer JB (1991) Auranticins A and B: two depsidones from a mangrove isolate of the fungus Preussia aurantiaca. J Nat Prod 54:213–217

    Article  CAS  PubMed  Google Scholar 

  • Poindexter JS (1981) Oligotrophy. Adv Microb Ecol 5:63–89

    Article  CAS  Google Scholar 

  • Pomilio AB, Battista ME, Vitale AA (2006) Naturally-occurring cyclopeptides: structures and bioactivity. Curr Org Chem 10(16):2075–2121. http://hdl.handle.net/20.500.12110/paper_13852728_v10_n16_p2075_Pomilio

    Article  CAS  Google Scholar 

  • Powell AJ, Parchert KJ, Bustamante JM, Ricken JB, Hutchinson MI, Natvig DO (2012) Thermophilic fungi in an aridland ecosystem. Mycologia 104:813–825

    Article  PubMed  Google Scholar 

  • Preetha B, Viruthagiri T (2005) Biosorption of zinc (II) by Rhizopus arrhizus: equilibrium and kinetic modelling. Afr J Biotechnol 4(6):506–508

    CAS  Google Scholar 

  • Prista C, Michán C, Miranda IM, Ramos J (2016) The halotolerant Debaryomyces hansenii, the Cinderella of non-conventional yeasts. Yeast 33(10):523–533

    Article  CAS  PubMed  Google Scholar 

  • Priti V, Ramesha BT, Singh S, Ravikanth G, Ganeshaiah KN, Suryanarayanan TS et al (2009) How promising are endophytic fungi as alternative sources of plant secondary metabolites. Curr Sci 97:477–478

    Google Scholar 

  • Pudhom K, Teerawatananond T (2014) Rhytidenones A–F, spirobisnaphthalenes from Rhytidhysteron sp. AS21B, an endophytic fungus. J Nat Prod 77(8):1962–1966

    Article  CAS  PubMed  Google Scholar 

  • Qin XY, Yang KL, Li J, Wang CY, Shao CL (2015) Phylogenetic diversity and antibacterial activity of culturable fungi derived from the zoanthid Palythoahaddoni in the South China Sea. Mar Biotechnol 17(1):99–109

    Article  CAS  Google Scholar 

  • Raghukumar C, Muraleedharan U, Gaud VR, Mishra R (2004) Xylanases of marine fungi of potential use of bioleaching of paper pulp. J Ind Microbiol Biotechnol 31:433–441

    Article  CAS  PubMed  Google Scholar 

  • Rahmat E, Kang Y (2019) Adventitious root culture for secondary metabolite production in medicinal plants: a review. J Plant Biotechnol 46:143–157

    Article  Google Scholar 

  • Rahmat E, Kang Y (2020) Yeast metabolic engineering for the production of pharmaceutically important secondary metabolites. J Appl Microbiol Biotechnol 104:4659–4674. https://doi.org/10.1007/s00253-020-10587-y

    Article  CAS  Google Scholar 

  • Rana S, Kaur M (2012) Isolation and screening of cellulase producing microorganisms from degraded wood. Int J Pharm Bio Sci 2(1):10–15

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN et al (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Diversity and enzymes perspectives, vol 1. Springer, Switzerland, pp 1–62

    Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6

    Chapter  Google Scholar 

  • Rana KL, Kour D, Yadav AN (2019c) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162

    Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Negi C, Yadav AN et al (2020) Endophytic fungi from medicinal plants: biodiversity and biotechnological applications. In: Kumar A, Radhakrishnan E (eds) Microbial endophytes. Woodhead Publishing, Cambridge, MA, pp 273–305. https://doi.org/10.1016/B978-0-12-819654-0.00011-9

    Chapter  Google Scholar 

  • Raspor P, Zupan J (2006) Yeasts in extreme environments. In: Peter G, Rosa C (eds) The yeast handbook. Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 371–417

    Chapter  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2019a) Genetic manipulation of secondary metabolites producers. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 13–29. https://doi.org/10.1016/B978-0-444-63504-4.00002-5

    Chapter  Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N, Tataei Sarshari N (2019b) Bioengineering of secondary metabolites. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 55–68. https://doi.org/10.1016/B978-0-444-63504-4.00004-9

    Chapter  Google Scholar 

  • Rastogi RP, Sinha RP, Singh SP, Häder DP (2010) Photoprotective compounds from marine organisms. J Ind Microbiol Biotechnol 37(6):537–558

    Article  CAS  PubMed  Google Scholar 

  • Rateb ME, Ebel R (2011) Secondary metabolites of fungi from marine habitats. Nat Prod Rep 28(2):290–344

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar M, Bala Kumaran MD, Balashanmugam P (2014) Production of cellulase enzyme by Trichoderma reesei Cef19 and its application in the production of bio-ethanol. Pak J Biol Sci 17:735–739

    Article  Google Scholar 

  • Reczey K, Szengyel Z, Eklund R, Zacchi G (1996) Cellulase production by Trichoderma reesei. Bioresour Technol 57:25–30

    Article  CAS  Google Scholar 

  • Richardson MJ (2001) Diversity and occurrence of coprophilous fungi. Mycol Res 105(4):387–402

    Article  Google Scholar 

  • Rodriguez A, Perestelo F, Carnicero A, Regalado V, Perez R, De La Fuente G et al (1996) Degradation of natural lignins and lignocellulosic substrates by soil-inhabiting fungi imperfecti. FEMS Microbiol Ecol 21:213–219

    Article  CAS  Google Scholar 

  • Rodriguez A, Strucko T, Stahlhut GS, Kristensen M, Svenssen KD, Forster J et al (2017) Metabolic engineering of yeast for fermentative production of flavonoids. Bioresour Technol 245:1645–1654

    Article  CAS  PubMed  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Ruibal C, Platas G, Bills GF (2005) Isolation and characterization of melanized fungi from limestone in Mallorca. Mycol Prog 4:23–38

    Article  Google Scholar 

  • Russo G, Libkind D, Sampaio JP, VanBrock MR (2008) Yeast diversity in the acidic Río Agrio-Lake Caviahue volcanic environment (Patagonia, Argentina). FEMS Microbiol Ecol 65:415–424

    Article  CAS  PubMed  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  PubMed  Google Scholar 

  • Sahay H, Yadav AN, Singh AK, Singh S, Kaushik R, Saxena AK (2017) Hot springs of Indian Himalayas: potential sources of microbial diversity and thermostable hydrolytic enzymes. 3 Biotech 7:1–11

    Article  Google Scholar 

  • Saito I (1998) Non-gramineous hosts of Myriosclerotinia borealis. Mycoscience 39:145–153

    Article  Google Scholar 

  • Saleh H, Abdelrazak A, Elsayed AE, Osman Y (2018) Exploring antimicrobial potentials of melanin from a black yeast strain. J Biol Life Sci 9(2):24–38

    Article  Google Scholar 

  • Saravanakumar K, Senthilraja P, Kathiresan K (2013) Bioethanol production by mangrove-derived marine yeast, Sacchromyces cerevisiae. J King Saud Univ Sci 25(2):121–127

    Article  Google Scholar 

  • Saxena AK, Yadav AN, Rajawat M, Kaushik R, Kumar R, Kumar M et al (2016) Microbial diversity of extreme regions: an unseen heritage and wealth. Indian J Plant Genet Resour 29:246–248

    Article  Google Scholar 

  • Schmit JP, Shearer CA (2003) A checklist of mangrove-associated fungi, their geography and known host plants. Mycotaxon 80:423–477

    Google Scholar 

  • Schwarze F (2007) Wood decay under the microscope. Fungal Biol Rev 21(4):133–170

    Article  Google Scholar 

  • Selim KA, Nagia MMS, El-Ghwas DE (2016) Endophytic Fungi are multifunctional biosynthesis: ecological and chemical diversity. In: Hughes E (ed) Endophytic fungi: diversity, characterization and biocontrol. Nova Science Publisher, New York, pp 39–91

    Google Scholar 

  • Senthilraja P, Kathiresan K, Saravanakumar K (2011) Comparative analysis of biotethanol production by different strains of immobilized marine yeast. J Yeast Fung Res 8:113–116

    Google Scholar 

  • Sert HB, Sterflinger K (2010) A new Coniosporium species from historical marble monuments. Mycol Prog 9:353–359

    Article  Google Scholar 

  • Shah AR, Madamwar D (2005) Xylanase production by a newly isolated Aspergillus foetidus strain and its characterization. Process Biochem 40:1763–1771

    Article  CAS  Google Scholar 

  • Shao CL, Wang CY, Gu YC, Wei MY, Pan JH, Deng DS et al (2010) Penicinoline, a new pyrrolyl 4-quinolinone alkaloid with an unprecedented ring system from an endophytic fungus Penicillium sp. Bioorg Med Chem Lett 20:3284–3286

    Article  CAS  PubMed  Google Scholar 

  • Shearer CA, Descals E, Kohlmeyer B, Kohlmeyer J, Marvanová L, Padgett D et al (2007) Fungal biodiversity in aquatic habitats. Biodivers Conserv 16(1):49–67

    Article  Google Scholar 

  • Shi Y, Zhang X, Lou K (2013) Isolation, characterization, and insecticidal activity of an endophyte of drunken horse grass, Achnatherum inebrians. J Insect Sci 13:151. https://doi.org/10.1673/031.013.15101

    Article  PubMed  PubMed Central  Google Scholar 

  • Shwab EK, Keller NP (2008) Regulation of secondary metabolite production in filamentous ascomycetes. Mycol Res 112:225–230

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MS, Thodey K, Trenchard I, Smolke CD (2012) Advancing secondary metabolite biosynthesis in yeast with synthetic biology tools. FEMS Yeast Res 12:144–170

    Article  CAS  PubMed  Google Scholar 

  • Sigoillot M, Brockhoff A, Lescop E, Poirier N, Meyerhof W, Briand L (2012) Optimization of the production of gurmarin, a sweet-taste suppressing protein, secreted by the methylotrophic yeast Pichia pastoris. Appl Microbiol Biotechnol 96:1253–1263

    Article  CAS  PubMed  Google Scholar 

  • Silva GH, Teles LH, Trevisan CH, Bolzani SV, Young MC, Haddad R et al (2005) New bioactive metabolites produced by Phomopsis cassiae, an endophytic fungus in Cassia spectabilis. J Braz Chem Soc 16:1463–1466

    Article  CAS  Google Scholar 

  • Simões Calaça FJ, Xavier-Santos S, Abdel-Azeem AM (2020) Recent advances on occurrence of genus Chaetomium on dung. In: Abdel-Azeem AM (ed) Recent developments on genus Chaetomium, Fungal biology. Springer Nature, Switzerland, pp 143–159

    Chapter  Google Scholar 

  • Singh SM, Puja G, Bhat DJ (2006) Psychrophilic fungi from Schirmacher Oasis, East Antarctica. Curr Sci 90:1388–1392

    Google Scholar 

  • Siridechakorn I, Yue Z, Mittraphab Y, Lei X, Pudhom K (2017) Identification of spirobisnaphthalene derivatives with anti-tumor activities from the endophytic fungus Rhytidhysteron rufulum AS21B. Bioorg Med Chem 25(11):2878–2882

    Article  CAS  PubMed  Google Scholar 

  • Smith RN, Nadim LM (1983) Fungal growth on inert surfaces. Biodeterioration 5:538–547

    Google Scholar 

  • Smitha SL, Correya NS, Philip R (2014) Marine fungi as a potential source of enzymes and antibiotics. Int J Res Mar Sci 3:5–10

    Google Scholar 

  • Sohail M, Siddiqi R, Ahmad A, Khan SA (2009) Cellulase production from Aspergillus niger MS82: effect of temperature and pH. New Biotechnol 25:437–441

    Article  CAS  Google Scholar 

  • Song XH, Liu XH, Lin YC (2004) Metabolites of mangrove fungus No. K23 and interaction of carboline with DNA. J Trop Oceangr 23(3):66–71

    CAS  Google Scholar 

  • Sonjak S, Frisvad JC, Gunde-Cimerman N (2006) Penicillium mycobiota in Arctic subglacial ice. Microbiol Ecol 52:207–216

    Article  Google Scholar 

  • Staley JT, Palmer FE, Adams JB (1982) Microcolonial fungi: common inhabitants on desert rocks? Science 215:1093–1095

    Article  CAS  PubMed  Google Scholar 

  • Staley JT, Adams JB, Palmer FE (1992) Desert varnish: a biological perspective. In: Stotzky G, Bollag JM (eds) . Soil biochemistry, Marcel Dekker, New York, pp 173–195

    Google Scholar 

  • Steffen KT, Hofrichter M, Hatakka A (2000) Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 54:819–825

    Article  CAS  PubMed  Google Scholar 

  • Sterflinger K, Krumbein WE (1997) Dematiaceous fungi as a major agent for biopitting on Mediterranean marbles and limestone. Geomicrobiol J 14:219–230

    Article  Google Scholar 

  • Sterflinger K, de Baere R, de Hoog GS, de Wachter R, Krumbein WE, Haase G (1997) Coniosporium perforans and C. apollinis, two new rock-inhabiting fungi isolated from marble in the Sanctuary of Delos (Cyclades, Greece). Antonie Van Leeuwenhoek 72:349–363

    Article  CAS  PubMed  Google Scholar 

  • Sterflinger K, Tesei D, Zakharova K (2012) Fungi in hot and cold deserts with special reference to microcolonial fungi. Fungal Ecol 5(4):453–462

    Article  Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukumaran RK, Singhania RR, Pandey A (2005) Microbial cellulases production, applications and challenges. J Sci Ind Res 64:832

    CAS  Google Scholar 

  • Tan RX, Zou WX (2001) Endophytes: a rich source of functional metabolites. Nat Prod Rep 18:448–459

    Article  CAS  PubMed  Google Scholar 

  • Taneja K, Gupta S, Kuhad RC (2002) Properties and application of a partially purified alkaline xylanase from an alkalophilic fungus Aspergillus nidulans KK-99. Bioresour Technol 85:39–42

    Article  CAS  PubMed  Google Scholar 

  • Tansey MR, Brock TD (1972) The upper temperature limit for eukaryotic organisms. Proc Natl Acad Sci U S A 69:2426–2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiele-Bruhn S, Bloem J, de Vries FT, Kalbitz K, Wagg C (2012) Linking soil biodiversity and agricultural land management. Curr Opin Environ Sustain 4(5):523–528

    Article  Google Scholar 

  • Tilburn J, Sarkar S, Widdick DA, Espeso EA, Orejas M, Mungroo J et al (1995) The Aspergillus PacC zinc finger transcription factor mediates regulation of both acid- and alkaline-expressed genes by ambient pH. EMBO J 14:779–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trantas E, Panopoulos N, Ververidis F (2009) Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metab Eng 11:355–366. https://doi.org/10.1016/j.ymben.2009.07.004

    Article  CAS  PubMed  Google Scholar 

  • Traquair JA, Gaudet DA, Kokko EG (1987) Ultrastructure and influences of temperature on the in vitro production of Coprinus psychromorbidus sclerotia. Can J Bot 65:124–130

    Article  Google Scholar 

  • Trenchard IJ, Siddiqui MS, Thodey K, Smolke CD (2015) De novo production of the key branch point benzylisoquinoline alkaloid reticuline in yeast. Metab Eng 31:74–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchiya T, Yamada K, Minoura K, Miyamoto K, Usami Y, Kobayashi T et al (2008) Purification and determination of the chemical structure of the tyrosinase inhibitor produced by Trichoderma viride strain H1-7 from a marine environment. Biol Pharm Bull 31:1618–1620

    Article  CAS  PubMed  Google Scholar 

  • Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72:169–183

    Article  CAS  Google Scholar 

  • Turchetti B, Buzzini P, Goretti M, Branda E, Diolaiuti G, D’Agata C et al (2008) Psychrophilic yeasts in glacial environments of Alpine glaciers. FEMS Microb Ecol 63:73–83

    Article  CAS  Google Scholar 

  • Uhlig H (1998) Industrial enzymes and their applications. Wiley, New York, p 435

    Google Scholar 

  • Unal A (2015) Production of α-amylase from some thermophilic Aspergillus species and optimization of its culture medium and enzyme activity. Afr J Biotechnol 14:3179–3183

    Article  CAS  Google Scholar 

  • Urzì C, Wollenzien U, Criseo G, Krumbein WE (1995) Biodiversity of the rock inhabiting microbiota with special reference to black fungi and black yeasts. In: Allsopp D, Colwell RR, Hawksworth DL (eds) Microbial diversity and ecosystem function. CAB International, Wallingford, UK, pp 289–302

    Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human diseases. Int J Biochem Cell Biol 39(1):44–84

    Article  CAS  PubMed  Google Scholar 

  • Verbruggen E, Van Der Heijden MG, Weedon JT, Gay K, Röling WF (2012) Community assembly, species richness and nesting of arbuscular mycorrhizal fungi in agricultural soils. Ecol Mol 21(10):2341–2353

    Article  Google Scholar 

  • Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK et al (2019) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci 26:1882–1895. https://doi.org/10.1016/j.sjbs.2016.01.042

    Article  PubMed  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlasenko E, Schulein M, Cherry J, Xu F (2010) Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases. Bioresour Technol 101(7):2405–2411

    Article  CAS  PubMed  Google Scholar 

  • Wagner KH, Elmadfa I (2003) Biological relevance of terpenoids: overview focusing on mono-, di- and tetraterpenes. Ann Nutr Metab 47:95–106

    Article  CAS  PubMed  Google Scholar 

  • Wainwright M, Barakah F, M-Turk I, Ali AT (1992) Oligotrophic organisms in industry, medicine and the environment. Sci Progr 75:313–322

    Google Scholar 

  • Wainwright M, Ali TA, Barakah F (1993) A review of the role of oligotrophic micro-organisms in biodeterioration. Int Biodeterior Biodegradation 31:1–13

    Article  Google Scholar 

  • Wang FW, Jiao RH, Cheng AB (2007) Antimicrobial potentials of endophytic fungi residing in Quercus variabilis and brefeldin A obtained from Cladosporium sp. World J Microbiol Biotechnol 23:79–83. https://doi.org/10.1007/s11274-006-9195-4

    Article  CAS  Google Scholar 

  • Wang CC, Chiang YM, Kuo PL, Chang JK, Hsu YL (2008) Norsolorinic acid from Aspergillus nidulans inhibits the proliferation of human breast adenocarcinoma MCF-7 cells via Fas-mediated pathway. Basic Clin Pharmacol Toxicol 102(6):491–497. https://doi.org/10.1111/j.1742-7843.2008.00237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WL, Chi ZM, Chi Z, Li J, Wang XH (2009) Siderophore production by the marine-derived Aureobasidium pullulans and its antimicrobial activity. Bioresour Technol 100:2639–2641

    Article  CAS  PubMed  Google Scholar 

  • Wang YT, Xue YR, Liu CH (2015) A brief review of bioactive metabolites derived from deep-sea fungi. Mar Drugs 13(8):4594–4616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XW, Houbraken J, Groenewald JZ, Meijer M, Andersen B, Nielsen KF et al (2016) Diversity and taxonomy of Chaetomium and chaetomium-like fungi from indoor environments. Stud Mycol 84:145–224. https://doi.org/10.1016/j.simyco.2016.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber D, Sterner O, Anke T, Gorzalczancy S, Martin V, Acevedo C (2004) Phomol, a new anti-inflammatory metabolite from an endophyte of the medicinal plant Erythrina cristagalli. J Antibiot 57:559–563

    Article  CAS  Google Scholar 

  • Webster J (1976) Aquatic fungi. Nature 261(5555):82–82

    Article  Google Scholar 

  • Westfall PJ, Pitera DJ, Lenihan JR, Eng D, Woolard FX, Regentin R et al (2012) Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc Natl Acad Sci U S A 109:111–118

    Article  Google Scholar 

  • Wicklow DT (1981) Biogeography and conidial fungi. In: Cole GT, Kendrick B (eds) The biology of conidial fungi. Academic, New York, pp 417–447

    Chapter  Google Scholar 

  • Wink M (2008) Plant secondary metabolism: diversity, function and its evolution. Nat Prod Commun 3:1205–1216

    CAS  Google Scholar 

  • Woiciechowski AL, Porto de Souza Vandenberghe L, Karp SG et al (2013) The pretreatment step in lignocellulosic biomass conversion: current systems and new biological systems. In: Faraco V (ed) Lignocellulose conversion: enzymatic and microbial tools for bioethanol production. Springer, Berlin

    Google Scholar 

  • Wollenzien U, de Hoog GS, Krumbein WE, Urzi C (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Total Environ 167:287–294

    Article  CAS  Google Scholar 

  • Wollenzien U, de Hoog GS, Krumbein W, Uijthof JMJ (1997) Sarcinomyces petricola, a new microcolonial fungus from marble in the Mediterranean basin. Antonie Van Leeuwenhoek 71:281–288

    Google Scholar 

  • Wong DW (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209

    Article  CAS  PubMed  Google Scholar 

  • Wong KM, Goh T, Hodgkiss IJ et al (1998) Role of fungi in freshwater ecosystems. Biodivers Conserv 7:1187–1206

    Article  Google Scholar 

  • Wu RY (1993) Studies on the microbial ecology of the Tansui Estuary. Bot Bull Acad Sin 34:13–30

    Google Scholar 

  • Wu B, Wu X, Sun M, Li M (2013) Two novel tyrosinase inhibitory sesquiterpenes induced by CuCl2 from a marine-derived fungus Pestalotiopsis sp. Z233. Mar Drugs 11:2713–2721

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu G, Yu G, Kurtan T, Mandi A, Peng J, Mo X et al (2015) Versixanthones A–F, cytotoxic xanthone–chromanone dimers from the marine-derived fungus Aspergillus versicolor HDN1009. J Nat Prod 78(11):2691–2698

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Zhao Y, Chen R, Liu D, Liu M, Proksch P, Lin W (2016) Phenolic metabolites from mangrove-associated Penicillium pinophilum fungus with lipid-lowering effects. RSC Adv 6(26):21969–21978

    Article  CAS  Google Scholar 

  • Wu ZH, Liu D, Xu Y, Chen JL, Lin WH (2018) Antioxidant xanthones and anthraquinones isolated from a marine-derived fungus Aspergillus versicolor. Chin J Nat Med 16(3):219–224. https://doi.org/10.1016/S1875-5364(18)30050-50

    Article  CAS  PubMed  Google Scholar 

  • Xu X, De Guzman FS, Gloer JB, Shearer CA (1992) Stachybotris A and B: novel bioactive metabolites from a brackish water isolate of fungus Stachybotrys sp. J Org Chem 57:6700–6703

    Article  CAS  Google Scholar 

  • Xu MJ, Gessner G, Groth I, Lange C, Christner A, Bruhn T, Deng ZW, Li X, Heinemann SH, Grabley S, Bringmann G, Sattler I, Lin WH (2007) Shearing D–K, new indole triterpenoids from an endophytic Penicillium sp. (strain HKI0459) with blocking activity on large-conductance calcium-activated potassium channels. Tetrahedron 63:435–444

    Article  CAS  Google Scholar 

  • Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol 1:01–05

    Google Scholar 

  • Yadav AN (2020) Recent trends in mycological research, Agricultural and medical perspective, vol 1. Springer, Switzerland

    Google Scholar 

  • Yadav AN, Sharma D, Gulati S, Singh S, Dey R, Pal KK et al (2015) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293. https://doi.org/10.1038/srep12293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav AN, Verma P, Kumar V, Sachan SG, Saxena AK (2017) Extreme cold environments: a suitable niche for selection of novel psychrotrophic microbes for biotechnological applications. Adv Biotechnol Microbiol 2:1–4

    Article  Google Scholar 

  • Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK (2018) Psychrotrophic microbiomes: molecular diversity and beneficial role in plant growth promotion and soil health. In: Panpatte DG, Jhala YK, Shelat HN, Vyas RV (eds) Microorganisms for green revolution, Microbes for sustainable agro-ecosystem, vol 2. Springer, Singapore, pp 197–240. https://doi.org/10.1007/978-981-10-7146-1_11

    Chapter  Google Scholar 

  • Yadav AN, Kour D, Rana KL, Yadav N, Singh B, Chauhan VS et al (2019a) Metabolic engineering to synthetic biology of secondary metabolites production. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 279–320. https://doi.org/10.1016/B978-0-444-63504-4.00020-7

    Chapter  Google Scholar 

  • Yadav AN, Kour D, Sharma S, Sachan SG, Singh B, Chauhan VS et al (2019b) Psychrotrophic microbes: biodiversity, mechanisms of adaptation, and biotechnological implications in alleviation of cold stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting Rhizobacteria for sustainable stress management, Rhizobacteria in abiotic stress management, vol 1. Springer, Singapore, pp 219–253. https://doi.org/10.1007/978-981-13-6536-2_12

    Chapter  Google Scholar 

  • Yadav AN, Mishra S, Singh S, Gupta A (2019c) Recent advancement in white biotechnology through fungi, Diversity and enzymes perspectives, vol 1. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019d) Recent advancement in white biotechnology through fungi, Perspective for value-added products and environments, vol 2. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019e) Recent advancement in white biotechnology through fungi, Perspective for sustainable environments, vol 3. Springer International Publishing, Cham

    Book  Google Scholar 

  • Yadav AN, Kaur T, Kour D, Rana KL, Yadav N, Rastegari AA et al (2020a) Saline microbiome: biodiversity, ecological significance and potential role in amelioration of salt stress in plants. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 283–309. https://doi.org/10.1016/B978-0-12-820526-6.00018-X

    Chapter  Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N (2020b) Microbiomes of extreme environments, Biotechnological applications in agriculture, environment and industry, vol 2. CRC Press, Taylor & Francis Group, Boca Raton, FL

    Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N (2020c) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton, FL

    Google Scholar 

  • Yamamoto H, Kadzunori T, Uchiwa T (1985) Fungal flora of soil polluted with copper. Soil Biol Biochem 17:785–790

    Article  CAS  Google Scholar 

  • Yan XQ, Jian HY, Hui ZZ, Yang SS (2005a) Purification, elucidation and activities study of cytosporone B. J Xiamen Univ Nat Sci 44(3):425–428

    Google Scholar 

  • Yan J, Song WN, Nevo E (2005b) A MAPK gene from Dead Sea fungus confers stress tolerance to lithium salt and freezing–thawing: prospects for saline agriculture. Proc Natl Acad Sci U S A 102:18992–18997

    Article  Google Scholar 

  • Yelle DJ, Ralph J, Lu FC, Hammel KE (2008) Evidence for cleavage of lignin by a brown rot basidiomycete. Environ Microbiol 10:1844–1849

    Article  CAS  PubMed  Google Scholar 

  • Yin Z, Shi F, Jiang H, Roberts DP, Chen S, Fan B (2015) Phosphate solubilization and promotion of maize growth by Penicillium oxalicum P4 and Aspergillus niger P85 in a calcareous soil. Can J Microbiol 61(12):913–923. https://doi.org/10.1139/cjm-2015-0358

    Article  CAS  PubMed  Google Scholar 

  • Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98:2257–2561

    Article  Google Scholar 

  • Zalar P, de Hoog GS, Schroers H-J, Frank JM, Gunde-Cimerman N (2005) Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie Van Leeuwenhoek 87:311–328

    Article  CAS  PubMed  Google Scholar 

  • Zalar P, de Hoog GS, Schroers H-J, Crous J, Groenewald JZ, Gunde-Cimerman N (2007) Phylogeny and ecology of the ubiquitous saprobe Cladosporium shpaerospermum, with descriptions of seven new species from hypersaline environments. Stud Mycol 58:157–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalar P, Frisvad JC, Gunde-Cimerman N, Varga J, Samson RA (2008) Four new species of Emericella from the Mediterranean region of Europe. Mycologia 100:779–795

    Article  PubMed  Google Scholar 

  • Zhang X, Liu Y, Yan K, Wu H (2007) Decolorization of an anthraquinone-type dye by a bilirubin oxidase-producing nonligninolytic fungus Myrothecium sp. IMER1. J Biosci Bioeng 104:104–114

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Yang X, Kang JS, Choi HD, Son BW (2008) Circumdatin I, a new ultraviolet-a protecting benzodiazepine alkaloid from a marine isolate of the fungus Exophiala. J Antibiot 61:40

    Article  CAS  Google Scholar 

  • Zhang F, Huo Y, Cobb AB, et al (2018) Trichoderma biofertilizer links to altered soil chemistry, altered microbial communities, and improved grassland biomass. Front Microbiol. 9:848. https://doi.org/10.3389/fmicb.2018.00848

  • Zhang S, Fang H, Yin C, Wei C, Hu J, Zhang Y (2019) Antimicrobial metabolites produced by Penicillium mallochii CCH01 isolated from the gut of Ectropis oblique, cultivated in the presence of a histone deacetylase inhibitor. Front Microbiol 10:2186. https://doi.org/10.3389/fmicb.2019.02186

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Diao X, Wang T, Chen G, Lin Q, Yang X et al (2018) Phylogenetic diversity and antioxidant activities of culturable fungal endophytes associated with the mangrove species Rhizophora stylosa and R. mucronata in the South China Sea. PLoS One 13(6):e0197359. https://doi.org/10.1371/journal.pone.0197359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Dong J, Wang L et al (2008) Screening and isolation of antinematodal metabolites against Bursaphelenchus xylophilus produced by fungi. Ann Microbiol 58:375–380

    Article  CAS  Google Scholar 

  • Žifčáková L, Vetrovský T, Howe A, Baldrian P (2016) Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ Microbiol 18(1):288–301

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Ahmed Abo Nouh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abo Nouh, F.A. et al. (2021). Bioprospecting for Biomolecules from Different Fungal Communities: An Introduction. In: Abdel-Azeem, A.M., Yadav, A.N., Yadav, N., Sharma, M. (eds) Industrially Important Fungi for Sustainable Development. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-85603-8_1

Download citation

Publish with us

Policies and ethics