Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12946))

Abstract

In the area of autonomous driving there is a need to flexibly configure and simulate more complex individual pedestrian behavior in critical traffic scenes which goes beyond predefined behavior simulation. This paper presents a novel human-oriented, agent-based pedestrian simulation framework, named HAIL, that addresses this challenge. HAIL allows to simulate human pedestrian behavior through means of imitation learning by virtual agents. For this purpose, HAIL combines the 3D traffic simulation environment OpenDS with an integrated imitation learning environment and hybrid agents with AJAN. For predictive behavior planning on the tactical and strategical level, AJAN is extended with Answer Set Programming. For pedestrian behavior imitation learning on the operational level, HAIL utilizes the module InfoSalGAIL for generation of pedestrian paths learned from demonstration by its human counterpart as expert. Among others, an application example has been demonstrated that HAIL can be applied to solve a common challenge in the Neural Network domain, namely the out-of-distribution (OOD), e.g. never shown scenarios would raise an uncertainty prediction level, by unison work of the two different behavior generation frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Carla: https://carla.org/.

  2. 2.

    LGSVL: https://www.lgsvlsimulator.com/.

  3. 3.

    OpenDS - open source driving simulation: https://opends.dfki.de/.

  4. 4.

    PTV Viswalk: https://www.ptvgroup.com/de/loesungen/produkte/ptv-viswalk/.

  5. 5.

    VADERE Crowd simulation: http://www.vadere.org/.

  6. 6.

    PDESIM - pedestrian crowd simulation: http://pedsim.silmaril.org/.

  7. 7.

    Unreal-BTs:  https://docs.unrealengine.com/InteractiveExperiences/BehaviorTrees.

  8. 8.

    AJAN-service: https://github.com/aantakli/AJAN-service AJAN-editor: https://github.com/aantakli/AJAN-editor.

  9. 9.

    Not like EKs, where only the corresponding agent behavior has access to.

  10. 10.

    AJAN uses LibGDX-BTs: https://github.com/libgdx/gdx-ai/wiki/Behavior-Trees.

  11. 11.

    Upon initialization, an AJAN agent receives RDF descriptions of available InfoSalGAIL models defining trained street configurations.

  12. 12.

    ASP-SBT-node:  https://github.com/aantakli/AJAN-service/tree/master/pluginsystem/plugins/ASPPlugin.

  13. 13.

    In AJAN we use the Potassco clingo solver: https://potassco.org/clingo/.

  14. 14.

    Videos of the FoV of the pedestrian agent in scenario A can be found at: https://cloud.dfki.de/owncloud/index.php/s/HAf5wQtMAx3F9K5.

References

  1. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning. In: Proceedings 21st International Conference Machine Learning (ICML) (2004)

    Google Scholar 

  2. Antakli, A., et al.: Agent-based web supported simulation of human-robot collaboration. In: Proceedings International Conference Web Information Systems and Technologies (WebIST) (2019)

    Google Scholar 

  3. Antakli, A., Zinnikus, I., Klusch, M.: ASP-driven BDI-planning agents in virtual 3D environments. In: Klusch, M., Unland, R., Shehory, O., Pokahr, A., Ahrndt, S. (eds.) MATES 2016. LNCS (LNAI), vol. 9872, pp. 198–214. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45889-2_15

    Chapter  Google Scholar 

  4. Bloem, M., Bambos, N.: Infinite time horizon maximum causal entropy inverse reinforcement learning. In: International Conference Decision and Control. IEEE (2014)

    Google Scholar 

  5. Brambilla, M., Facca, F.M.: Building semantic web portals with a model-driven design approach. In: Web Technologies: Concepts, Methodologies, Tools, and Applications, pp. 541–570. IGI Global (2010)

    Google Scholar 

  6. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: Proceedings 29th International Conference Neural Information Processing Systems (NeurIPS), pp. 2172–2180 (2016)

    Google Scholar 

  7. Colledanchise, M., Ögren, P.: Behavior Trees in Robotics and AI: An Introduction. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  8. Ho, J., Ermon, S.: Generative adversarial imitation learning. In: Proceedings 29th International Conference Neural Information Processing Systems (NeurIPS) (2016)

    Google Scholar 

  9. Ianni, G., Martello, A., Panetta, C., Terracina, G.: Efficiently querying RDF (S) ontologies with answer set programming. Logic Comput. 19(4), 671–695 (2009)

    Article  MathSciNet  Google Scholar 

  10. Ishaque, M.M., Noland, R.B.: Behavioural issues in pedestrian speed choice and street crossing behaviour: a review. Transp. Rev. 28(1), 61–85 (2008)

    Article  Google Scholar 

  11. Karamouzas, I., Heil, P., van Beek, P., Overmars, M.H.: A predictive collision avoidance model for pedestrian simulation. In: Egges, A., Geraerts, R., Overmars, M. (eds.) MIG 2009. LNCS, vol. 5884, pp. 41–52. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10347-6_4

    Chapter  Google Scholar 

  12. Lee, J., Li, T., De Vos, M., Padget, J.: Using social institutions to guide virtual agent behaviour. In: The AAMAS Workshop on Cognitive Agents for Virtual Environments (CAVE-2013). Citeseer (2013)

    Google Scholar 

  13. Li, Y., Song, J., Ermon, S.: InfoGAIL: interpretable imitation learning from visual demonstrations. In: Proceedings 30th International Conference Neural Information Processing Systems (NeurIPS) (2017)

    Google Scholar 

  14. Panagiotidi, S., Nieves, J.C., Vazquez-Salceda, J.: A framework to model norm dynamics in answer set programming. In: Proceedings International Workshop Multi-agent Logics, Languages, and Organisations (MALLOW), vol. CEUR 494 (2009)

    Google Scholar 

  15. Paxton, C., Hundt, A., Jonathan, F., Guerin, K., Hager, G.D.: CoSTAR: instructing collaborative robots with behavior trees and vision. In: Proceedings IEEE International Conference Robotics and Automation (ICRA). IEEE (2017)

    Google Scholar 

  16. Reynolds, C.W.: Steering behaviors for autonomous characters. In: Game Developers Conference, vol. 1999, pp. 763–782. Citeseer (1999)

    Google Scholar 

  17. Ross, S., Bagnell, D.: Efficient reductions for imitation learning. In: Proceedings 13th International Conference Artificial Intelligence and Statistics (2010)

    Google Scholar 

  18. Teknomo, K., Takeyama, Y., Inamura, H.: Review on microscopic pedestrian simulation model. arXiv preprint arXiv:1609.01808 (2016)

  19. Vizzari, G., Crociani, L., Bandini, S.: An agent-based model for plausible wayfinding in pedestrian simulation. Eng. Appl. Artif. Intell. 87, 103241 (2020)

    Article  Google Scholar 

  20. Vozniak, I., Klusch, M., Antakli, A., Müller, C.: InfoSalGAIL: visual attention-empowered imitation learning of pedestrians in critical TRAFC scenarios. In: International Conference Neural Computation Theory and Application (NCTA). IEEE (2020)

    Google Scholar 

Download references

Acknowledgements

The work described in this paper has been funded by the German Federal Ministry of Education and Research (BMBF) through the project REACT (grant no. 01/W17003) and in part by Huawei Munich Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Antakli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antakli, A., Vozniak, I., Lipp, N., Klusch, M., Müller, C. (2021). HAIL: Modular Agent-Based Pedestrian Imitation Learning. In: Dignum, F., Corchado, J.M., De La Prieta, F. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Social Good. The PAAMS Collection. PAAMS 2021. Lecture Notes in Computer Science(), vol 12946. Springer, Cham. https://doi.org/10.1007/978-3-030-85739-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85739-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85738-7

  • Online ISBN: 978-3-030-85739-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics