Skip to main content

Complexity of a Fragment of Infinitary Action Logic with Exponential via Non-well-founded Proofs

  • Conference paper
  • First Online:
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2021)

Abstract

Infinitary action logic (\(\mathbf {ACT}_\omega \)) can be viewed as an extension of the multiplicative-additive Lambek calculus (\(\mathbf {MALC}\)) with iteration (Kleene star) governed by an omega-rule (Buszkowski, Palka 2007). An alternative formulation utilizes non-well-founded proofs instead of the omega-rule (Das, Pous 2017). Another unary operation commonly added to \(\mathbf {MALC}\) is the exponential. We consider a system which has both Kleene star and the exponential. In general, this system is of a very high complexity level: it is \(\varPi ^1_1\)-complete (Kuznetsov, Speranski 2020), while \(\mathbf {ACT}_\omega \) itself is \(\varPi ^0_1\)-complete. As a reasonable intermediate logic, we consider the fragment where Kleene star is not allowed to appear in the scope of the exponential. For this fragment we manage to construct a formulation based on non-well-founded proofs, with an easily checkable correctness criterion. Using this formulation, we prove that this fragment indeed has strictly intermediate complexity, namely, we prove a \(\varPi ^0_2\) lower bound and a \(\varDelta ^1_1\) upper bound. We also prove a negative result that this fragment does not enjoy Palka’s *-elimination property, which would have given a \(\varPi ^0_2\) upper bound as well.

The work was supported by the Russian Science Foundation, in cooperation with the Austrian Science Fund, under grant RSF–FWF 20-41-05002.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Kozen uses a different notation.

  2. 2.

    For accuracy, we distinguish \(A^m\) as a sequence from \(A^{{\bullet } m}\) as one formula. In fact, they are of course equivalent.

References

  1. Baelde, D.: Least and greatest fixed points in linear logic. ACM Trans. Comput. Log. 13(1), 2:1–2:44 (2012)

    Google Scholar 

  2. Buszkowski, W.: Lambek calculus with nonlogical axioms. In: Casadio, C., et al. (eds.) Language and Grammar, Studies in Mathematical Linguistics and Natural Language, pp. 77–93. CSLI Publications (2002)

    Google Scholar 

  3. Buszkowski, W.: On action logic: equational theories of action algebras. J. Log. Comput. 17(1), 199–217 (2007)

    Article  MathSciNet  Google Scholar 

  4. Buszkowski, W., Palka, E.: Infinitary action logic: complexity, models and grammars. Stud. Logica 89(1), 1–18 (2008)

    Article  MathSciNet  Google Scholar 

  5. Das, A., Pous, D.: Non-well-founded proof theory for (Kleene+action) (algebras+lattices). In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Leibniz International Proceedings in Informatics (LIPIcs), vol. 119, pp. 19:1–19:18. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2018). https://doi.org/10.4230/LIPIcs.CSL.2018.19

  6. Galatos, N., Jipsen, P., Kowalski, T., Ono, H.: Residuated Lattices: An Algebraic Glimpse at Substructural Logics. Studies in Logic and the Foundations of Mathematics, vol. 151. Elsevier (2007)

    Google Scholar 

  7. Girard, J.Y.: Linear logic. Theoret. Comput. Sci. 50(1), 1–102 (1987)

    Article  MathSciNet  Google Scholar 

  8. de Groote, P.: On the expressive power of the Lambek calculus extended with a structural modality. In: Casadio, C., et al. (eds.) Language and Grammar. Studies in Mathematical Linguistics and Natural Language, CSLI Lecture Notes, vol. 168, pp. 95–111 (2005)

    Google Scholar 

  9. Kanovich, M., Kuznetsov, S., Nigam, V., Scedrov, A.: Subexponentials in non-commutative linear logic. Math. Struct. Comput. Sci. 29(8), 1217–1249 (2019)

    Article  MathSciNet  Google Scholar 

  10. Kanovich, M., Kuznetsov, S., Nigam, V., Scedrov, A.: Soft subexponentials and multiplexing. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol. 12166, pp. 500–517. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51074-9_29

    Chapter  Google Scholar 

  11. Kozen, D.: On action algebras. In: van Eijck, J., Visser, A. (eds.) Logic and Information Flow, pp. 78–88. MIT Press (1994)

    Google Scholar 

  12. Kozen, D.: On the complexity of reasoning in Kleene algebra. Inf. Comput. 179, 152–162 (2002)

    Article  MathSciNet  Google Scholar 

  13. Kuznetsov, S.: Action logic is undecidable. ACM Trans. Comput. Log. 22(2), 10:1–10:26 (2021)

    Google Scholar 

  14. Kuznetsov, S.L.: A \({\varPi }_1^0\)-bounded fragment of infinitary action logic with exponential. In: Nigam, V., et al. (eds.) Logic, Language, and Security. LNCS, vol. 12300, pp. 3–16. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62077-6_1

    Chapter  Google Scholar 

  15. Kuznetsov, S.L., Speranski, S.O.: Infinitary action logic with exponentiation. arXiv preprint arXiv:2001.06863 (2020, submitted)

  16. Lincoln, P., Mitchell, J., Scedrov, A., Shankar, N.: Decision problems for propositional linear logic. Ann. Pure Appl. Logic 56(1–3), 239–311 (1992)

    Article  MathSciNet  Google Scholar 

  17. Ono, H., Komori, Y.: Logics without contraction rule. J. Symb. Log. 50(1), 169–201 (1985)

    Article  MathSciNet  Google Scholar 

  18. Palka, E.: An infinitary sequent system for the equational theory of *-continuous action lattices. Fund. Inform. 78(2), 295–309 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Pratt, V.: Action logic and pure induction. In: van Eijck, J. (ed.) JELIA 1990. LNCS, vol. 478, pp. 97–120. Springer, Heidelberg (1991). https://doi.org/10.1007/BFb0018436

    Chapter  Google Scholar 

  20. Rogozin, D.: Quantale semantics of Lambek calculus with subexponential modalities. arXiv preprint arXiv:1908.01055 (2019)

  21. Wurm, C.: Language-theoretic and finite relation models for the (full) Lambek calculus. J. Logic Lang. Inform. 26(2), 179–214 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is grateful to Anupam Das and Stanislav Speranski for fruitful discussions. The author also thanks the reviewers for thorough consideration of the paper and many valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stepan L. Kuznetsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kuznetsov, S.L. (2021). Complexity of a Fragment of Infinitary Action Logic with Exponential via Non-well-founded Proofs. In: Das, A., Negri, S. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2021. Lecture Notes in Computer Science(), vol 12842. Springer, Cham. https://doi.org/10.1007/978-3-030-86059-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86059-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86058-5

  • Online ISBN: 978-3-030-86059-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics