Skip to main content

The Došen Square Under Construction: A Tale of Four Modalities

  • Conference paper
  • First Online:
Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12842))

Abstract

In classical modal logic, necessity \({\mathop {\Box } A}\), possibility \({\mathop {\Diamond } A}\), impossibility \({\mathop {\Box } \lnot A}\) and non-necessity \({\mathop {\Diamond } \lnot A}\) form a Square of Oppositions (SO) whose corners are interdefinable using classical negation. The relationship between these modalities in intuitionistic modal logic is a more delicate matter since negation is weaker. Intuitionistic non-necessity \({\mathop {\boxminus }}\) and impossibility , first investigated by Došen, have received less attention and—together with their positive counterparts \({\mathop {\Box }}\) and \({\mathop {\Diamond }}\)—form a square we call the Došen Square. Unfortunately, the core property of constructive logic, the Disjunction Property (DP), fails when the modalities are combined and, interpreted in birelational Kripke structures à la Došen, the Square partially collapses. We introduce the constructive logic \(\mathsf {CKD}\), whose four semantically independent modalities \({\mathop {\Box }}\), \({\mathop {\Diamond }}\), \({\mathop {\boxminus }}\), prevent the Došen Square from collapsing under the effect of intuitionistic negation while preserving DP. The model theory of \(\mathsf {CKD}\) involves a constructive Kripke frame interpretation of the modalities. A Hilbert deduction system and an equivalent cut-free sequent calculus are presented. Soundness, completeness and finite model property are proven, implying that \(\mathsf {CKD}\) is decidable. The logics \({\mathsf {HK} {\mathop {\boxminus }}}\), \({\mathsf {HK} {\mathop {\Box }}}\), and of Došen and other known theories of intuitionistic modalities are syntactic fragments or axiomatic extensions of \(\mathsf {CKD}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Such negative modalities have been considered in the literature on FDE and Routley semantics as ways of capturing forms of negation [17,18,19, 28, 36] often called ‘constructible’ or ‘strong’ negation [26, 37]. We do not suggest that the role of and \({\mathop {\boxminus }}\) in the logic \(\mathsf {CKD}\) is to capture forms of negation; rather, we are simply interested in how they behave in a constructive setting (i.e. in which the Disjunction Property holds) as modal operators.

  2. 2.

    Our claim is that the doubly quantified truth conditions are a neat way out of the bind, not that they are necessary in order to provide a logic which combines \(\Box \), \({\mathop {\Diamond }}\), and \({\mathop {\boxminus }}\) interpreted with respect to the same relation.

  3. 3.

    As usual, we can take \(\top =_{\scriptstyle {df}}p \rightarrow p\) for a variable \(p \in Var \). Interestingly, also absurdity \(\bot \) is representable, viz. as the non-necessity of truth, i.e., \({\bot =_{\scriptstyle {df}}\mathop {\boxminus } \top }\). First, \(\mathfrak {M}, s \,\models \, \bot \) implies \({\mathfrak {M}, s \,\models \, \mathop {\boxminus } \top }\) since by definition there is no \(s'\) with \({s \sqsubseteq s'}\). Second, if \({\mathfrak {M}, s \,\models \, \mathop {\boxminus } \top }\) and \(s \not \!\in \, F\) we would have \({s \sqsubseteq s}\) and so by the truth condition for \({\mathop {\boxminus }}\) there must be \(s''\) with \(s \mathrel {R} s''\) and . This is impossible, hence \(s \in F\) and so \(\mathfrak {M}, s \,\models \, \bot \).

  4. 4.

    Blamey and Humberstone also use sets as scopes as we do, avoiding structural rules of duplication and permutation. However, [5] use an explicit weakening rule, which is built into the rules of \(G_{\mathsf {CKD}}\). Our dispatch rule \({cp}R ^- \) is named \(\mathsf {Switch}\) in [5].

  5. 5.

    A frame is weakly functional if \({\forall s \in S \setminus F.\, \exists s'.\ s \mathrel {{\sqsubseteq }{;}{\mathrel {R}}} s'}\) and \( \forall s, s_1', s_2'.\, s \mathrel {{\sqsubseteq }{;}{\mathrel {R}}} s_1' \& s \mathrel {{\sqsubseteq }{;}{\mathrel {R}}} s_2' \Rightarrow s_1' \cong s_2'\), where \(s_1' \cong s_2'\) iff \(s_1' \le s_2'\) and \(s_2' \le s_1'\). The frame is functional if the existence condition holds in the stronger form \({\forall s \in S.\, \exists s'.\, s \mathrel {{\sqsubseteq }{;}{\mathrel {R}}} s'}\).

References

  1. Acclavio, M., Catta, D., Straßburger, L.: Towards a denotational semantics for proofs in constructive modal logic. arXiv preprint arXiv:2104.09115 (2021)

  2. Arisaka, R., Das, A., Straßburger, L.: On nested sequents for constructive modal logics. Logical Methods in Computer Science 11 (2015)

    Google Scholar 

  3. Bellin, G., de Paiva, V., Ritter, E.: Extended Curry-Howard correspondence for a basic constructive modal logic. In: Methods for Modalities II (2001)

    Google Scholar 

  4. Benton, N., Bierman, G., de Paiva, V.: Computational types from a logical perspective. J. Funct. Program. 8(2), 177–193 (1998)

    Article  MathSciNet  Google Scholar 

  5. Blamey, S., Humberstone, L.: A perspective on modal sequent logic. Publ. Res. Inst. Math. Sci. 27, 763–782 (1991)

    Article  MathSciNet  Google Scholar 

  6. Božić, M., Došen, K.: Models for normal intuitionistic modal logics. Studia Logica 43(3), 217–245 (1984)

    Article  MathSciNet  Google Scholar 

  7. Cabalar, P., Odintsov, S.P., Pearce, D.: Logical foundations of well-founded semantics. In: P.D. et al. (ed.) Proceedings of International Conference on Knowledge Representation and Reasoning (2006)

    Google Scholar 

  8. Dalmonte, T., Grellois, C., Olivetti, N.: Intuitionistic non-normal modal logics: a general framework. J. Philos. Logic 49, 833–882 (2020)

    Google Scholar 

  9. Došen, K.: Negation in the light of modal logic. In: Gabbay, D.M., Wansing, H. (eds.) What is Negation?, pp. 77–86. Springer, Heidelberg (1999). https://doi.org/10.1007/978-94-015-9309-0_4

    Chapter  MATH  Google Scholar 

  10. Došen, K.: Negative modal operators in intuitionistic logic. Publications de L’Institut Mathématique 35(49), 3–14 (1984)

    MathSciNet  MATH  Google Scholar 

  11. Došen, K.: Negation as a modal operator. Rep. Math. Logic 20(1986), 15–27 (1986)

    MathSciNet  MATH  Google Scholar 

  12. Dragalin, A.G.: Mathematical Intuitionism: Introduction to Proof Theory. American Mathematical Society (1988)

    Google Scholar 

  13. Drobyshevich, S.: Double negation operator in logic \({N}^\star \). J. Math. Sci. 205(3) (2015)

    Google Scholar 

  14. Drobyshevich, S.A., Odintsov, S.P.: Finite model property for negative modalities. Sibirskie Elektronnye Matematicheskie Izvestiia 10 (2013)

    Google Scholar 

  15. Drobyshevich, S.A.: Composition of an intuitionistic negation and negative modalities as a necessity operator. Algebra Logic 52, 1–19 (2013). https://doi.org/10.1007/s10469-013-9235-8

    Article  MathSciNet  MATH  Google Scholar 

  16. Drobyshevich, S.: On classical behavior of intuitionistic modalities. Logic Log. Philos. 24(1), 79–104 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Dunn, J.M.: Star and perp: two treatments of negation. Philos. Perspect. 7, 331–357 (1993)

    Article  Google Scholar 

  18. Dunn, J.M.: Negation, a notion in focus, vol. 7, chap. Generalized Ortho Negation, pp. 3–26. Walter de Gruyter Berlin (1996)

    Google Scholar 

  19. Dunn, J.M., Zhou, C.: Negation in the context of gaggle theory. Studia Logica 80(2–3), 235–264 (2005). https://doi.org/10.1007/s11225-005-8470-y

    Article  MathSciNet  MATH  Google Scholar 

  20. Fairtlough, M., Mendler, M.: Propositional lax logic. Inf. Comput. 137(1), 1–33 (1997)

    Article  MathSciNet  Google Scholar 

  21. Fitting, M.: Basic modal logic. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 1, pp. 368–448. Oxford University Press, New York (1993)

    Google Scholar 

  22. Mendler, M., Scheele, S.: Towards constructive DL for abstraction and refinement. J. Autom. Reason. 44(3), 207–243 (2010). https://doi.org/10.1007/s10817-009-9151-8

    Article  MathSciNet  MATH  Google Scholar 

  23. Mendler, M., Scheele, S.: Cut-free Gentzen calculus for multimodal CK. Inf. Comput. 209(12), 1465–1490 (2011)

    Article  MathSciNet  Google Scholar 

  24. Mendler, M., Scheele, S.: On the computational interpretation of CK\(_n\). Fundamenta Informaticae 130, 1–39 (2014)

    Article  MathSciNet  Google Scholar 

  25. Mendler, M., de Paiva, V.: Constructive CK for contexts. In: Proceedings of the First Workshop on Context Representation and Reasoning, CONTEXT 2005 (2005)

    Google Scholar 

  26. Nelson, D.: Constructible falsity. J. Symb. Logic 14(1), 16–26 (1949)

    Article  MathSciNet  Google Scholar 

  27. Odintsov, S., Wansing, H.: Routley star and hyperintensionality. J. Philos. Logic 50, 33–56 (2020)

    Article  MathSciNet  Google Scholar 

  28. Odintsov, S.P.: Combining intuitionistic connectives and Routley negation. In: Siberian Electronic Mathematical Reports (2005)

    Google Scholar 

  29. Plotkin, G., Stirling, C.: A framework for intuitionistic modal logics. In: Halpern, J. (ed.) Theoretical Aspects of Reasoning About Knowledge, pp. 399–406. Monterey (1986)

    Google Scholar 

  30. Poggiolesi, F.: Gentzen Calculi for Modal and Propositional Logic. Springer, Heidelberg (2011). https://doi.org/10.1007/978-90-481-9670-8

    Book  MATH  Google Scholar 

  31. Popkorn, S.: First Steps in Modal Logic. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  32. Sato, M.: A study of Kripke-type models for some modal logics by Gentzen’s sequential method. Publ. Res. Inst. Math. Sci. 13, 381–468 (1977)

    Article  MathSciNet  Google Scholar 

  33. Scheele, S.: Model and Proof Theory of Constructive ALC, Constructive Description Logics. Ph.D. thesis, University of Bamberg (2015)

    Google Scholar 

  34. Simpson, A.K.: The proof theory and semantics of intuitionistic modal logic. Ph.D. thesis, University of Edinburgh, Scottland (1994)

    Google Scholar 

  35. Sotirov, V.H.: Modal theories with intuitionistic logic. In: Proceedings of the Conference on Mathematical Logic, Sophia, pp. 139–171 (1980)

    Google Scholar 

  36. Speranski, S.O.: Negation as a modality in a quantified setting. J, Logic Comput. (2021)

    Google Scholar 

  37. Wansing, H.: On split negation, strong negation, information, falsification, and verification. In: Bimbó, K. (ed.) J. Michael Dunn on Information Based Logics. OCL, vol. 8, pp. 161–189. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29300-4_10

    Chapter  Google Scholar 

  38. Westerståhl, D.: On the Aristotelian square of opposition. Kapten Mnemos Kolumbarium, en festskrift med anledning av Helge Malmgrens (2005)

    Google Scholar 

  39. Wijesekera, D.: Constructive modal logic I. Ann. Pure Appl. Logic 50, 271–301 (1990)

    Article  MathSciNet  Google Scholar 

  40. Wolter, F., Zakharyaschev, M.: Intuitionistic modal logics as fragments of classical bimodal logics. Logic at work, pp. 168–186 (1997)

    Google Scholar 

  41. Wolter, F., Zakharyaschev, M.: The relation between intuitionistic and classical modal logics. Algebra Logic 36(2), 73–92 (1997)

    Article  MathSciNet  Google Scholar 

  42. Wolter, F., Zakharyaschev, M.: Intuitionistic modal logic. In: Cantini, A., Casari, E., Minari, P. (eds.) Logic and Foundations of Mathematics, pp. 227–238. Springer, Heidelberg (1999). https://doi.org/10.1007/978-94-017-2109-7_17

    Chapter  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees and the PC, who provided useful and detailed comments on the submission version of the paper, and Stanislav Speranski, for sharing thoughts on constructive negation as a modality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Scheele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mendler, M., Scheele, S., Burke, L. (2021). The Došen Square Under Construction: A Tale of Four Modalities. In: Das, A., Negri, S. (eds) Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2021. Lecture Notes in Computer Science(), vol 12842. Springer, Cham. https://doi.org/10.1007/978-3-030-86059-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86059-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86058-5

  • Online ISBN: 978-3-030-86059-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics