Skip to main content

Blockchain Empowered Federated Learning for Medical Data Sharing Model

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12939))

Abstract

In medical fields, data sharing for patients can improve the collaborative diagnosis and the complexity of traditional medical treatment process. Under the condition of data supervision, federated learning breaks the restrictions between medical institutions and realizes the sharing of medical data. However, there are still some issues. For example, lack of trust among medical institutions leads to the inability to establish safe and reliable cooperation mechanisms. For another example, malicious medical institutions destroy model aggregation by sharing false parameters. In this paper, we propose a new federated learning scheme based on blockchain architecture for medical data sharing. Moreover, we propose an intelligent contract to verify the identity of participants and detect malicious participants in federated learning. The experimental results show that the proposed data sharing scheme provides a credible participation mechanism for medical data sharing based on federal learning, and provides both higher efficiency and lower energy consumption as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pouyanfar, S., et al.: A survey on deep learning: algorithms, techniques, and applications. ACM Comput. Surv. 51(5), 92:1–92:36 (2019)

    Google Scholar 

  2. Hatcher, W.G., Yu, W.: A survey of deep learning: platforms, applications and emerging research trends. IEEE Access 6, 24411–24432 (2018)

    Article  Google Scholar 

  3. Trask, A.W.: Grokking Deep Learning (2019)

    Google Scholar 

  4. Yan, B., Yu, J., Wang, Y., Guo, Q., Chai, B., Liu, S.: Blockchain-based service recommendation supporting data sharing. In: Yu, D., Dressler, F., Yu, J. (eds.) WASA 2020. LNCS, vol. 12384, pp. 580–589. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59016-1_48

    Chapter  Google Scholar 

  5. Kim, H., Park, J., Bennis, M., Kim, S.-L.: Blockchained on-device federated learning. IEEE Commun. Lett. 24(6), 1279–1283 (2020)

    Article  Google Scholar 

  6. Qu, Y., Pokhrel, S.R., Garg, S., Gao, L., Xiang, Y.: A blockchained federated learning framework for cognitive computing in industry 4.0 networks. IEEE Trans. Industr. Inf. 17(4), 2964–2973 (2020)

    Article  Google Scholar 

  7. Yunlong, L., Huang, X., Dai, Y., Maharjan, S., Zhang, Y.: Blockchain and federated learning for privacy-preserved data sharing in industrial IoT. IEEE Trans. Ind. Inf. 16(6), 4177–4186 (2020)

    Article  Google Scholar 

  8. Martinez, I., Francis, S., Hafid, A.S.: Record and reward federated learning contributions with blockchain. In: 2019 International Conference on Cyber-enabled Distributed Computing and Knowledge Discovery (CyberC), pp. 50–57. IEEE (2019)

    Google Scholar 

  9. Qu, Y., et al.: Decentralized privacy using blockchain-enabled federated learning in fog computing. IEEE Internet Things J. 7(6), 5171–5183 (2020)

    Article  Google Scholar 

  10. Wang, Y., Yu, J., Yan, B., Wang, G., Shan, Z.: BSV-PAGS: blockchain-based special vehicles priority access guarantee scheme. Comput. Commun. 161, 28–40 (2020)

    Article  Google Scholar 

  11. Yunlong, L., Huang, X., Zhang, K., Maharjan, S., Zhang, Y.: Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles. IEEE Trans. Veh. Technol. 69(4), 4298–4311 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by National Key R&D Program of China (Grant No. 2019YFB2102600), NSFC (Grants No. 61832012, 61771289), the Key Research and Development Program of Shandong Province (Grant No. 2019JZZY020124), the Pilot Project for Integrated Innovation of Science, Education and Industry of Qilu University of Technology (Shandong Academy of Sciences) (Grant No. 2020KJC-ZD02), and the Key Program of Science and Technology of Shandong (Grant No. 2020CXGC010901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Yan, B., Yao, Y. (2021). Blockchain Empowered Federated Learning for Medical Data Sharing Model. In: Liu, Z., Wu, F., Das, S.K. (eds) Wireless Algorithms, Systems, and Applications. WASA 2021. Lecture Notes in Computer Science(), vol 12939. Springer, Cham. https://doi.org/10.1007/978-3-030-86137-7_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86137-7_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86136-0

  • Online ISBN: 978-3-030-86137-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics