Skip to main content

Application of the Generalized Extremal Optimization and Sandpile Model in Search for the Airborne Contaminant Source

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2021)

Abstract

In this paper, the Generalized Extremal Optimization (GEO) algorithm is combined with the Sandpile model to localize the airborne contaminant source based on the contaminant concentration’s spatial distribution. The GEO algorithm scans the proposed model’s solution space to find the contamination source by comparing the Sandpile model output with the contaminant distribution over the considered area. The comparison is made by evaluating the assessment function considering the differences between the distribution of the sand grains from the Sandpile model and contaminant concentrations reported by the sensor network monitoring the considered area. The evolution of the sand grains in the Sandpile model is realized by the cellular automata cells. The proposed GEO-Sandpile localization model efficiency is verified using the synthetic contaminant concentration data generated by the Gaussian dispersion model: conducted test cases presented in this paper covered the various wind directions, and release source positions. Obtained results support the statement that the proposed algorithm can, with acceptable accuracy, localize the contaminant source based only on the sparse-point concentrations of the released substance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aegerter, C.M.: A sandpile model for the distribution of rainfall? Phys. A 319, 1–10 (2003)

    Article  Google Scholar 

  2. Bak, P.: How Nature Works: The Science of Self-Organized Criticality, 1st edn. Springer, Heidelberg (1999)

    MATH  Google Scholar 

  3. Bak, P., Tang, C.: Earthquakes as a self-organized critical phenomenon. J. Geophys. Res. 94(B11), 15635–15637 (1989)

    Article  Google Scholar 

  4. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59(4), 381–384 (1987)

    Article  Google Scholar 

  5. Bjorner, A., Lovász, L., Shor, W.: Chip-firing games on graphs. Eur. J. Combin. 12, 283–291 (1991)

    Article  MathSciNet  Google Scholar 

  6. Borysiewicz, M., Wawrzynczak, A., Kopka, P.: Stochastic algorithm for estimation of the model’s unknown parameters via Bayesian inference. In: Proceedings of the Federated Conference on Computer Science and Information Systems, pp. 501–508. IEEE Press, Wroclaw (2012). ISBN 978-83-60810-51-4

    Google Scholar 

  7. Chan, Y., Marckert, J.F., Selig, T.: A natural stochastic extension of the sandpile model on a graph. J. Combin. Theory Ser. A 120, 1913–1928 (2013)

    Article  MathSciNet  Google Scholar 

  8. Chapman, S.C., Dendy, R.O., Rowlands, G.: A sandpile model with dual scaling regimes for laboratory, space and astrophysical plasmas. Phys. Plasmas 6, 4169 (1999)

    Article  Google Scholar 

  9. D\(\acute{e}\)s\(\acute{e}\)rable, D., Dupont, P., Hellou, M., Kamali-Bernard, S.: Cellular automata in complex matter. Complex Syst. 20(1), 67–91 (2011)

    Google Scholar 

  10. Formenti, E., Pham, T.V., Duong Phan, T.H., Thu, T.: Fixed-point forms of the parallel symmetric sandpile model. Theoret. Comput. Sci. 533, 1–14 (2014)

    Article  MathSciNet  Google Scholar 

  11. Frette, V., Christensen, K., Malthe-Sørenssen, A., Feder, J., Jøssang, T., Meakin, P.: Avalanche dynamics in a pile of rice. Nature 379, 49–52 (1996)

    Article  Google Scholar 

  12. Galski, R.L., de Sousa, F.L., Ramos, F.M., Muraoka, I.: Spacecraft thermal design with the genrelized extremal optimization algorithm. In: Inverse Problems, Design and Optimization Symposium, Brazil (2004)

    Google Scholar 

  13. Goles, E., Morvan, M., Phan, H.D.: Sandpiles and order structure of integer partitions. Discrete Appl. Math. 117, 51–64 (2002)

    Article  MathSciNet  Google Scholar 

  14. Hutchinson, M., Oh, H., Chen, W.H.: A review of source term estimation methods for atmospheric dispersion events using static or mobile sensors. Inform. Fusion 36, 130–148 (2017)

    Article  Google Scholar 

  15. Hesse, J., Gross, T.: Self-organized criticality as a fundamental property of neural systems. Front. Syst. Neurosci. 8, 166 (2014)

    Article  Google Scholar 

  16. Bhaumik, H., Santra, S.B.: Stochastic sandpile model on small-world networks: scaling and crossover. Phys. A: Stat. Mech. Appl. 511, 258–370 (2018)

    Article  Google Scholar 

  17. Kopka, P., Wawrzynczak, A.: Framework for stochastic identification of atmospheric contamination source in an urban area. Atmos. Environ. 195, 63–77 (2018)

    Article  Google Scholar 

  18. Latapy, M., Mataci, R., Morvan, M., Phan, H.D.: Structure of some sandpiles model. Theoret. Comput. Sci. 262, 525–556 (2001)

    Article  MathSciNet  Google Scholar 

  19. Latapy, M., Phan, H.D.: The lattice structure of chip firing games. Phys. D 155, 69–82 (2000)

    Article  MathSciNet  Google Scholar 

  20. Marchel, L.: Zastosowanie modelu ‘Sandpile’ w procesie optymalizacji. Master thesis, supervisor: Szaban M. (2020). (in Polish)

    Google Scholar 

  21. Parsaeifard, B., Moghimi-Araghi, S.: Controlling cost in sandpile models through local adjustment of drive. Phys. A 534, 122185 (2019)

    Article  Google Scholar 

  22. Ricotta, C., Avena, G., Marchetti, M.: The flaming sandpile: self-organized criticality and wildfires. Ecol. Model. 119(1), 73–77 (1999)

    Article  Google Scholar 

  23. Rossin, D., Cori, R.: On the sandpile group of dual graphs. Eur. J. Combin. 21(4), 447–459 (2000)

    Article  MathSciNet  Google Scholar 

  24. Rothman, D., Grotzinger, J., Flemings, P.: Scaling in turbidite deposition. J. Sediment. Res. 64(1a), 59–67 (1994)

    Google Scholar 

  25. De Sousa, F.L., Ramos, F.M., Paglione, P., Girardi, R.M.: New stochastic algorithm for design optimization. AIAA J. 41(9), 1808–1818 (2003)

    Article  Google Scholar 

  26. De Sousa, F.L., Vlassov, V., Ramos, F.M.: Generalized extremal optimization: an application in heat pipe design. Appl. Math. Modell. 28, 911–931 (2004)

    Article  Google Scholar 

  27. De Sousa, F.L., Ramos, F.M., Soeiro F.J.C.P., Silva Neto, A.J.: Application of the generalized extremal optimizayion algorithm to an inverse radiative transfer problem. In: Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK, 11–15 July 2005 (2005)

    Google Scholar 

  28. Wawrzynczak, A., Danko, J., Borysiewicz, M.: Lokalizacja zrodla zanieczyszczen atmosferycznych za pomoca algorytmu roju czastek. Acta Scientarium Polonorum Adm. Locorum 13(4), 71–91 (2014). (in Polish)

    Google Scholar 

  29. Wawrzynczak, A., Berendt-Marchel, M.: Can the artificial neural network be applied to estimate the atmospheric contaminant transport? In: Dimov, I., Fidanova, S. (eds.) HPC 2019. SCI, vol. 902, pp. 132–142. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-55347-0_12. ISBN 978-3-030-55346-3

  30. Wawrzynczak, A., Berendt-Marchel, M.: Computation of the airborne contaminant transport in urban area by the artificial neural network. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020, Part II. LNCS, vol. 12138, pp. 401–413. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50417-5_30. ISBN 978-3-030-50416-8

  31. Wawrzynczak, A., Kopka, P., Borysiewicz, M.: Sequential Monte Carlo in Bayesian assessment of contaminant source localization based on the sensors concentration measurements. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2013. LNCS, vol. 8385, pp. 407–417. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55195-6_38

    Chapter  MATH  Google Scholar 

  32. Wolfram, S.: A New Kind of Science. Wolfram Media (2002)

    Google Scholar 

  33. Xie, D., Luo, Z., Yu, F.: The computing of the optimal power consumption of semi-track air-cushion vehicle using hybrid generalized extremal optimization. Appl. Math. Model. 33, 2831–2844 (2009)

    Article  Google Scholar 

  34. Zannetti, P.: Gaussian models. In: Zannetti, P. (ed.) Air Pollution Modeling, pp. 141–183. Springer, Boston (1990). https://doi.org/10.1007/978-1-4757-4465-1_7

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslaw Szaban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Szaban, M., Wawrzynczak, A., Berendt-Marchel, M., Marchel, L. (2021). Application of the Generalized Extremal Optimization and Sandpile Model in Search for the Airborne Contaminant Source. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2021. Lecture Notes in Computer Science(), vol 12942. Springer, Cham. https://doi.org/10.1007/978-3-030-86359-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86359-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86358-6

  • Online ISBN: 978-3-030-86359-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics