Skip to main content

Gaussian Process Encoders: VAEs with Reliable Latent-Space Uncertainty

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Research Track (ECML PKDD 2021)

Abstract

Variational autoencoders are a versatile class of deep latent variable models. They learn expressive latent representations of high dimensional data. However, the latent variance is not a reliable estimate of how uncertain the model is about a given input point. We address this issue by introducing a sparse Gaussian process encoder. The Gaussian process leads to more reliable uncertainty estimates in the latent space. We investigate the implications of replacing the neural network encoder with a Gaussian process in light of recent research. We then demonstrate how the Gaussian Process encoder generates reliable uncertainty estimates while maintaining good likelihood estimates on a range of anomaly detection problems. Finally, we investigate the sensitivity to noise in the training data and show how an appropriate choice of Gaussian process kernel can lead to automatic relevance determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Braithwaite, D.T., Kleijn, W.B.: Bounded information rate variational autoencoders. In: KDD Deep Learning Day (2018)

    Google Scholar 

  2. Casale, F.P., Dalca, A., Saglietti, L., Listgarten, J., Fusi, N.: Gaussian process prior variational autoencoders. In: Advances in Neural Information Processing Systems, pp. 10369–10380 (2018)

    Google Scholar 

  3. Dai, B., Wipf, D.: Diagnosing and enhancing VAE models. In: International Conference on Learning Representations (2018)

    Google Scholar 

  4. Dai, Z., Damianou, A.C., González, J., Lawrence, N.D.: Variational auto-encoded deep gaussian processes. In: ICLR (Poster) (2016)

    Google Scholar 

  5. Duvenaud, D.: Automatic model construction with Gaussian processes. Ph.D. thesis, University of Cambridge (2014)

    Google Scholar 

  6. Fortuin, V., Rätsch, G., Mandt, S.: Multivariate time series imputation with variational autoencoders. In: 23rd International Conference on Artificial Intelligence and Statistics (AISTATS) (2020)

    Google Scholar 

  7. Ha, D., Schmidhuber, J.: Recurrent world models facilitate policy evolution. In: Advances in Neural Information Processing Systems, pp. 2450–2462 (2018)

    Google Scholar 

  8. He, J., Spokoyny, D., Neubig, G., Berg-Kirkpatrick, T.: Lagging inference networks and posterior collapse in variational autoencoders. In: International Conference on Learning Representations (2018)

    Google Scholar 

  9. Hendrycks, D., Mazeika, M., Dietterich, T.G.: Deep anomaly detection with outlier exposure. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019)

  10. Jankowiak, M., Pleiss, G., Gardner, J.: Parametric gaussian process regressors. In: International Conference on Machine Learning, pp. 4702–4712. PMLR (2020)

    Google Scholar 

  11. Jazbec, M., Ashman, M., Fortuin, V., Pearce, M., Mandt, S., Rätsch, G.: Scalable gaussian process variational autoencoders. In: International Conference on Artificial Intelligence and Statistics, vol. 130, pp. 3511–3519. PMLR (2021)

    Google Scholar 

  12. Johnson, M.J., Duvenaud, D.K., Wiltschko, A., Adams, R.P., Datta, S.R.: Composing graphical models with neural networks for structured representations and fast inference. In: Advances in Neural Information Processing Systems, pp. 2946–2954 (2016)

    Google Scholar 

  13. Kingma, D.P., Welling, M.: An introduction to variational autoencoders. Found. Trends® Mach. Learn. 12(4), 307–392 (2019)

    Article  Google Scholar 

  14. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: 2nd International Conference on Learning Representations, ICLR 2014 (2014)

    Google Scholar 

  15. scikit learn: two moons dataset. In: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_moons.html, scikit-learn dataset make\_moons (2021). Accessed 2021

  16. LeCun, Y., Cortes, C., Burges, C.: MNIST handwritten digit database. ATT Labs [Online]. http://yann.lecun.com/exdb/mnist 2 (2010)

  17. Nalisnick, E.T., Matsukawa, A., Teh, Y.W., Görür, D., Lakshminarayanan, B.: Do deep generative models know what they don’t know? In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019)

  18. Nash, C., Williams, C.K.: The shape variational autoencoder: a deep generative model of part-segmented 3D objects. In: Computer Graphics Forum. vol. 36, pp. 1–12. Wiley Online Library (2017)

    Google Scholar 

  19. Pang, G., Shen, C., van den Hengel, A.: Deep anomaly detection with deviation networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 353–362 (2019)

    Google Scholar 

  20. Rayana, S.: Odds library. In: Stony Brook University, Department of Computer Sciences (2016)

    Google Scholar 

  21. Ren, J., et al.: Likelihood ratios for out-of-distribution detection. In: Advances in Neural Information Processing Systems, pp. 14680–14691 (2019)

    Google Scholar 

  22. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: International Conference on Machine Learning (2014)

    Google Scholar 

  23. Rubenstein, P., Schölkopf, B., Tolstikhin, I.: Learning disentangled representations with Wasserstein auto-encoders. In: International Conference on Learning Representations (ICLR 2018) Workshops (2018)

    Google Scholar 

  24. Skafte, N., Jørgensen, M., Hauberg, S.: Reliable training and estimation of variance networks. In: Advances in Neural Information Processing Systems, pp. 6326–6336 (2019)

    Google Scholar 

  25. Snelson, E., Ghahramani, Z.: Local and global sparse gaussian process approximations. In: Artificial Intelligence and Statistics, pp. 524–531 (2007)

    Google Scholar 

  26. Titsias, M.: Variational learning of inducing variables in sparse Gaussian processes. In: Artificial Intelligence and Statistics, pp. 567–574 (2009)

    Google Scholar 

  27. Tomczak, J., Welling, M.: VAE with a VampPrior. In: International Conference on Artificial Intelligence and Statistics, pp. 1214–1223 (2018)

    Google Scholar 

  28. Tran, D., Ranganath, R., Blei, D.M.: The variational Gaussian process. In: 4th International Conference on Learning Representations, ICLR 2016 (2016)

    Google Scholar 

  29. Van der Wilk, M., Rasmussen, C.E., Hensman, J.: Convolutional gaussian processes. In: Advances in Neural Information Processing Systems, pp. 2849–2858 (2017)

    Google Scholar 

  30. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms (2017)

    Google Scholar 

  31. Zhang, C., Bütepage, J., Kjellström, H., Mandt, S.: Advances in variational inference. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 2008–2026 (2018)

    Article  Google Scholar 

  32. Zhao, S., Song, J., Ermon, S.: Infovae: balancing learning and inference in variational autoencoders. Proc. AAAI Conf. Artif. Intell. 33, 5885–5892 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Bütepage .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bütepage, J., Maystre, L., Lalmas, M. (2021). Gaussian Process Encoders: VAEs with Reliable Latent-Space Uncertainty. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds) Machine Learning and Knowledge Discovery in Databases. Research Track. ECML PKDD 2021. Lecture Notes in Computer Science(), vol 12976. Springer, Cham. https://doi.org/10.1007/978-3-030-86520-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86520-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86519-1

  • Online ISBN: 978-3-030-86520-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics