Skip to main content

Multi-label Feature Selection Algorithm via Maximizing Label Correlation-Aware Relevance and Minimizing Redundance with Mutation Binary Particle Swarm Optimization

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12925))

Included in the following conference series:

  • 791 Accesses

Abstract

Multi-label classification deals with a special supervised classification problem where any instance could be associated with multiple class labels simultaneously. As various applications emerge continuously in big data field, their feature dimensionality also increases correspondingly, which generally increases computational burdens and even deteriorates classification performance. To this end, feature selection has become a necessary pre-processing step, in which it is still challenging to design an effective feature selection criterion and its corresponding optimization strategy. In this paper, a novel feature selection criterion is constructed via maximizing label correlation-aware relevance between features and labels, and minimizing redundance among features. Then this criterion is optimized using binary particle swarm optimization with mutation operation, to search for a globally optimal feature selection solution. The experiments on four benchmark data sets illustrate that our proposed feature selection algorithm is superior to three state-of-the-art methods according to accuracy and F1 performance evaluation metrics.

Supported by Natural Science Foundation of China (NSFC) under Grants 62076134 and 61703096.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://ceai.njnu.edu.cn/Lab/LABIC/LABIC_Software.html.

References

  1. Freitas, D., Lopes, L.G., Morgado-Dias, F.: Particle swarm optimisation: a historical review up to the current developments. Entropy 22, Article-362 (2020)

    Article  MathSciNet  Google Scholar 

  2. Hall, M.A.: Correlation-based feature selection for discrete and numeric class machine learning. In: 17th International Conference on Machine Learning (ICML 2000), pp. 359–366. OmniPress, Madson WI, USA (2000)

    Google Scholar 

  3. Hatami, M., Mehrmohammadi, P., Moradi, P.: A multi-label feature selection based on mutual information and ant colony optimization. In: 28th Iranian Conference Electrical Engineering (ICEE 2020), pp. 1–6. IEEE Press, New York, USA (2020)

    Google Scholar 

  4. Herrera, F., Charte, F., Rivera, A.J., del Jesus, M.J.: Multilabel Classification Problem Analysis. Metrics and Techniques. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41111-8

  5. Jungjit, S., Freitas, A.A.: A new genetic algorithm for multi-label correlation-based feature selection. In: 23rd European Symposium Artificial Neural Network, Artificial Intelligence Machine Learning (ESANN 2015), pp. 285–290. CIACO Press, Belgium (2015)

    Google Scholar 

  6. Kashef, S., Nezamabadi-pour, H., Nipour, B.: Multilabel feature selection: a comprehensive review and guide experiments. WIREs Data Min. Knowl. Disc. 8(2), Article-e1240 (2018)

    Google Scholar 

  7. Kiran, M.S.: The continuous artificial bee colony algorithm for binary optimization. Appl. Soft Comput. 33, 15–23 (2015)

    Article  Google Scholar 

  8. Lee, J., Kim, D.W.: Feature selection for multi-label classification using multivariate mutual information. Pattern Recogn. Lett. 34(3), 349–357 (2013)

    Article  Google Scholar 

  9. Lee, J., Kim, D.W.: Fast multi-label feature selection based on information-theoretic feature ranking. Pattern Recogn. 48(9), 2761–2771 (2015)

    Article  Google Scholar 

  10. Lee, J., Kim, D.W.: Mutual information-based multi-label feature selection using interaction information. Expert Syst. Appl. 42(4), 2013–2025 (2015)

    Article  Google Scholar 

  11. Li, F., Miao, D., Pedrycz, W.: Granular multi-label feature selection based on mutual information. Pattern Recogn. 67, 410–423 (2017)

    Article  Google Scholar 

  12. Lin, Y., Hu, Q., Liu, J., Duan, J.: Multi-label feature selection based on max-dependency and min-redundancy. Neurocomputing 168, 92–103 (2015)

    Article  Google Scholar 

  13. Nguyen, B.H., Xue, B., Zhang, M.: A survey on swarm intelligence approaches to feature selection in data mining. Swarm Evol. Comput. 54, Article-100663 (2020)

    Article  Google Scholar 

  14. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  15. Siblini, W., Kuntz, P., Meyer, F.: A review on dimensionality reduction for multi-label classification. IEEE Trans. Knowl. Data Eng. 33(3), 839–857 (2021)

    Google Scholar 

  16. Sun, Z., et al.: Mutual information based multi-label feature selection via constrained convex optimization. Neurocomputing 329, 447–456 (2019)

    Article  Google Scholar 

  17. Tao, Y., Li, J., Xu, J.: Multi-label feature selection method via maximizing correlation-based criterion with mutation binary bat algorithm. In: 32nd International Joint Conference Neural Networks (IJCNN 2020), pp. 1–8. IEEE Press, New York, USA (2020)

    Google Scholar 

  18. Vergara, J.R., Estévez, P.A.: A review of feature selection methods based on mutual information. Neural Comput. Appl. 24(1), 175–186 (2013). https://doi.org/10.1007/s00521-013-1368-0

    Article  Google Scholar 

  19. Wang, X., Zhao, L., Xu, J.: Multi-label feature selection method based on multivariate mutual information and particle swarm optimization. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11304, pp. 84–95. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04212-7_8

    Chapter  Google Scholar 

  20. Zhang, M.L., Zhou, Z.H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, X., Tao, Y., Li, J., Xu, J. (2021). Multi-label Feature Selection Algorithm via Maximizing Label Correlation-Aware Relevance and Minimizing Redundance with Mutation Binary Particle Swarm Optimization. In: Golfarelli, M., Wrembel, R., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2021. Lecture Notes in Computer Science(), vol 12925. Springer, Cham. https://doi.org/10.1007/978-3-030-86534-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86534-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86533-7

  • Online ISBN: 978-3-030-86534-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics