Skip to main content

Analysing the Surface Urban Heat Island Effect with Copernicus Data

  • Conference paper
  • First Online:
Electronic Government and the Information Systems Perspective (EGOVIS 2021)

Abstract

To ensure that the great opportunities of Copernicus satellite data offered, in open and free mode, are fully grasped, a major awareness of them must be widespread among European citizens, companies, and public administrations. To this end, initiatives such as the EO-UPTAKE Ligurian regional project aim at studying application scenarios centered on the use of Copernicus data and the dissemination of their outcomes to citizens and local authorities. As an example of this activity, the paper focuses on an application scenario for monitoring the Urban Heat Island (UHI) effect, considered among the most impacting effects on urban ecosystems, analyzed in the metropolitan area of Genoa. We discuss some strengths and weaknesses in the use of Copernicus satellite data and services, intending to provide a preliminary set of guidelines, useful not only for analyzing the UHI phenomenon in other urban contexts but also as a concrete example of exploitation of the Copernicus ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-slstr.

  2. 2.

    http://www.gisig.eu/projects/eouptake/.

  3. 3.

    geoportal.regione.liguria.it/.

  4. 4.

    land.copernicus.eu/pan-european/corine-land-cover.

  5. 5.

    scihub.copernicus.eu/dhus/#/home.

  6. 6.

    https://scihub.copernicus.eu/.

  7. 7.

    step.esa.int/main/toolboxes/snap.

  8. 8.

    qgis.org/it/site/.

  9. 9.

    sentinels.copernicus.eu/web/sentinel/user-guides/Sentinel-3-slstr/processing-levels.

  10. 10.

    cds.climate.copernicus.eu/cdsapp#!/Software/app-health-urban-heat-islands-current-climate?tab = app.

  11. 11.

    cds.climate.copernicus.eu/cdsapp#/Dataset/reanalysis-era5-land?Tab=overview.

  12. 12.

    sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-3-slstr/overview/geophysical-measurements/land-surface-temperature.

  13. 13.

    inspire.ec.europa.eu/inspire-directive/2.

  14. 14.

    www.ogc.org/standards.

  15. 15.

    eea.europa.eu/publications/technical_report_2007_17.

  16. 16.

    rus-copernicus.eu/portal/.

  17. 17.

    rus-copernicus.eu/portal/terms-and-conditions.

  18. 18.

    readthedocs.org/projects/sentinelsat/downloads/pdf/master/.

References

  1. Environmental European Agency: CORINE Land Cover Legend (1994). http://land.copernicus.eu/eagle/files/eagle-related-projects/pt_clc-conversion-to-fao-lccs3_dec2010

  2. Copernicus User Uptake (2016). https://op.europa.eu/en/publication-detail/-/publication/62101cd2-fbba-11e5-b713-01aa75ed71a1

  3. Bonafoni, S.: Downscaling of landsat and MODIS land surface temperature over the heterogeneous urban area of Milan. IEEE J. Select. Topics Appl. Earth Observ. Remote Sens. 9(5), 2019–2027 (2016)

    Article  Google Scholar 

  4. Büttner, G., Feranec, J., Jaffrain, G., Mari, L., Maucha, G., Soukup, T.: The CORINE land cover 2000 project. EARSeL eProc. 3(3), 331–346 (2004)

    Google Scholar 

  5. Cheval, S., et al.: Meteorological and ancillary data resources for climate research in urban areas. Climate 8(3), 8030037 (2020)

    Google Scholar 

  6. Clay, R., Guan, H., Wild, N., Bennett, J., Vinodkumar, Ewenz, C.: Urban Heat Island traverses in the City of Adelaide, South Australia. Urban Clim. 17, 89–101 (2016)

    Google Scholar 

  7. Dash, P., Göttsche, F.M., Olesen, F.S., Fischer, H.: Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends. Int. J. Remote Sens. 23(13), 2563–2594 (2002)

    Article  Google Scholar 

  8. Deilami, K., Kamruzzaman, M., Liu, Y.: Urban heat island effect: a systematic review of spatio-temporal factors, data, methods, and mitigation measures. Int. J. Appl. Earth Observ. Geoinf. 67, 30–42 (2018)

    Article  Google Scholar 

  9. Doldrina, C.: Open data and earth observations: the case of opening up access to and use of earth observation data through the global earth observation system of systems. J. Intell. Prop. Info. Tech. Electr. Com. L. 6, 73 (2015)

    Google Scholar 

  10. Donlon, C., et al.: The global monitoring for environment and security (GMES) sentinel-3 mission. Remote Sens. Environ. 120, 37–57 (2012)

    Article  Google Scholar 

  11. Faccini, F., Giardino, M., Paliaga, G., Perotti, L., Brandolini, P.: Urban geomorphology of Genoa old city (Italy). J. Maps 1–14 (2020)

    Google Scholar 

  12. Hidalgo García, D., Arco Díaz, J.: Modeling of the Urban Heat Island on local climatic zones of a city using Sentinel 3 images: Urban determining factors. Urban Clim. 37, 100840 (2021)

    Google Scholar 

  13. Huang, B., Wang, J., Song, H., Fu, D., Wong, K.: Generating high spatiotemporal resolution land surface temperature for urban heat island monitoring. IEEE Geosci. Remote Sens. Lett. 10(5), 1011–1015 (2013)

    Article  Google Scholar 

  14. Li, H., et al.: A new method to quantify surface urban heat island intensity. Sci. Total Environ. 624, 262–272 (2018)

    Article  Google Scholar 

  15. Lu, L., Weng, Q., Xiao, D., Guo, H., Li, Q., Hui, W.: Spatiotemporal variation of surface urban heat islands in relation to land cover composition and configuration: a multi-scale case study of Xi’an, China. Remote Sens. 12(17), 12172713 (2020)

    Google Scholar 

  16. Nichol, J.E., Fung, W.Y., se Lam, K., Wong, M.S.: Urban heat island diagnosis using ASTER satellite images and ‘in situ’ air temperature. Atmosph. Res. 94(2), 276–284 (2009)

    Google Scholar 

  17. Oke, T.R.: The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108(455), 1–24 (1982)

    Google Scholar 

  18. Quarati, A., De Martino, M.: Open government data usage: a brief overview. In: Proceedings of the 23rd International Database Applications & Engineering Symposium (IDEAS 2019), Athens, Greece, June 10–12, 2019. pp. 28:1–28:8. ACM (2019)

    Google Scholar 

  19. Quarati, A., De Martino, M.: Geospatial open data usage and metadata quality. ISPRS Int. J. Geo-Inf. 10, 10010030 (2021)

    Google Scholar 

  20. Quarati, A., Raffaghelli, J.E.: Do researchers use open research data? Exploring the relationships between usage trends and metadata quality across scientific disciplines from the Figshare case. J. Inf. Sci. (2020)

    Google Scholar 

  21. Quarati, A.: Open government data: usage trends and metadata quality. J. Inf. Sci. (2021, to appear)

    Google Scholar 

  22. Ravanelli, R., et al.: Monitoring the impact of land cover change on surface urban heat island through google earth engine: proposal of a global methodology, first applications and problems. Remote Sens. 10(9), 10091488 (2018)

    Google Scholar 

  23. Schwarz, N., Schlink, U., Franck, U., Grossmann, K.: Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators–an application for the city of Leipzig (Germany). Ecol. Indic. 18, 693–704 (2012)

    Article  Google Scholar 

  24. Shumilo, L., Kussul, N., Shelestov, A., Korsunska, Y., Yailymov, B.: Sentinel-3 urban heat island monitoring and analysis for kyiv based on vector data. In: 2019 10th International Conference on Dependable Systems, Services and Technologies (DESSERT). pp. 131–135. IEEE (2019)

    Google Scholar 

  25. Sobrino, J.A., Irakulis, I.: A methodology for comparing the surface urban heat island in selected urban agglomerations around the world from Sentinel-3 SLSTR data. Remote Sens. 12(12), 2052 (2020)

    Article  Google Scholar 

  26. Stathopoulou, M., Cartalis, C.: Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation. Remote Sens. Environ. 113(12), 2592–2605 (2009)

    Article  Google Scholar 

  27. Tran, H., Uchihama, D., Ochi, S., Yasuoka, Y.: Assessment with satellite data of the urban heat island effects in Asian mega cities. Int. J. Appl. Earth Observ. Geoinf. 8(1), 34–48 (2006)

    Article  Google Scholar 

  28. Voogt, J., Oke, T.: Thermal remote sensing of urban climates. Remote Sen. Environ. 86(3), 370–384 (2003)

    Article  Google Scholar 

  29. Zhao, X., Yang, S., Shen, S., Hai, Y., Fang, Y.: Analyzing the relationship between urban heat island and land use/cover changes in Beijing using remote sensing images. In: Gao, W., Jackson, T.J. (eds.) Remote Sens. Model. Ecosys. Sustain. VI, vol. 7454, pp. 320–329. International Society for Optics and Photonics, SPIE (2009)

    Google Scholar 

  30. Zhou, D., et al.: Satellite remote sensing of surface urban heat islands: progress, challenges, and perspectives. Remote Sens. 11(1), 48 (2019)

    Google Scholar 

Download references

Acknowledgments

The work is supported by the European Social Fund, Liguria Region 2014–2020, Axis 3, s.o. 10.5. We thank GISIG, in particular Silvia Gorni and Roderic Molina, for their precious collaboration as project partners.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lorenza Apicella or Monica De Martino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Apicella, L., Quarati, A., Martino, M.D. (2021). Analysing the Surface Urban Heat Island Effect with Copernicus Data. In: Kö, A., Francesconi, E., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Electronic Government and the Information Systems Perspective. EGOVIS 2021. Lecture Notes in Computer Science(), vol 12926. Springer, Cham. https://doi.org/10.1007/978-3-030-86611-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86611-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86610-5

  • Online ISBN: 978-3-030-86611-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics