Skip to main content

Towards Classifying the Polynomial-Time Solvability of Temporal Betweenness Centrality

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12911))

Included in the following conference series:

Abstract

In static graphs, the betweenness centrality of a graph vertex measures how many times this vertex is part of a shortest path between any two graph vertices. Betweenness centrality is efficiently computable and it is a fundamental tool in network science. Continuing and extending previous work, we study the efficient computability of betweenness centrality in temporal graphs (graphs with fixed vertex set but time-varying arc sets). Unlike in the static case, there are numerous natural notions of being a “shortest” temporal path (walk). Depending on which notion is used, it was already observed that the problem is #P-hard in some cases while polynomial-time solvable in others. In this conceptual work, we contribute towards classifying what a “shortest path (walk) concept” has to fulfill in order to gain polynomial-time computability of temporal betweenness centrality.

M. Rymar—Partially supported by the DFG, project MATE (NI 369/17).

H. Molter—Supported by the DFG, project MATE (NI 369/17), and by the ISF, grant No. 1070/20. Main part of this work was done while affiliated with TU Berlin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In fact, all optimal temporal path concepts (we are aware of) where path counting and computing the betweenness centrality can be done in polynomial time have this property, ensuring that optimal walks are indeed paths.

References

  1. Afrasiabi Rad, A., Flocchini, P., Gaudet, J.: Computation and analysis of temporal betweenness in a knowledge mobilization network. Comput. Soc. Netw. 4(1), 5 (2017)

    Google Scholar 

  2. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data Structures and Algorithms. Addison-Wesley (1983)

    Google Scholar 

  3. Alsayed, A., Higham, D.J.: Betweenness in time dependent networks. Chaos Solitons Fractals 72, 35–48 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bader, D.A., Kintali, S., Madduri, K., Mihail, M.: Approximating betweenness centrality. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 124–137. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77004-6_10

    Chapter  Google Scholar 

  5. Baglioni, M., Geraci, F., Pellegrini, M., Lastres, E.: Fast exact computation of betweenness centrality in social networks. In: Proceedings of the 4th International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012), pp. 450–456. IEEE Computer Society (2012)

    Google Scholar 

  6. Bellman, R.: On a routing problem. Q. Appl. Math. 16(1), 87–90 (1958)

    Article  MATH  Google Scholar 

  7. Bentert, M., Dittmann, A., Kellerhals, L., Nichterlein, A., Niedermeier, R.: An adaptive version of Brandes’ algorithm for betweenness centrality. J. Graph Algorithms Appl. 24(3), 483–522 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bentert, M., Himmel, A.-S., Nichterlein, A., Niedermeier, R.: Efficient computation of optimal temporal walks under waiting-time constraints. Appl. Netw. Sci. 5(1), 73 (2020)

    Article  Google Scholar 

  9. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)

    Article  MATH  Google Scholar 

  10. Bui-Xuan, B.-M., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost journeys in dynamic networks. Int. J. Found. Comput. Sci. 14(02), 267–285 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Buß, S., Molter, H., Niedermeier, R., Rymar, M.: Algorithmic aspects of temporal betweenness. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD 2020), pp. 2084–2092. Association for Computing Machinery (2020)

    Google Scholar 

  12. Casteigts, A., Himmel, A.-S., Molter, H., Zschoche, P.: The computational complexity of finding temporal paths under waiting time constraints. In: Proceedings of the 31st International Symposium on Algorithms and Computation (ISAAC 2020), LIPIcs, vol. 181, pages 30:1–30:18. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020)

    Google Scholar 

  13. Ford Jr., L.R.: Network flow theory. Technical report, Rand Corp Santa Monica CA (1956)

    Google Scholar 

  14. Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40(1), 35–41 (1977)

    Article  Google Scholar 

  15. Geisberger, R., Sanders, P., Schultes, D.: Better approximation of betweenness centrality. In: Proceedings of the 10th Meeting on Algorithm Engineering & Expermiments (ALENEX 2008), pp. 90–100. SIAM (2008)

    Google Scholar 

  16. Gunturi, V.M., Shekhar, S., Joseph, K., Carley, K.M.: Scalable computational techniques for centrality metrics on temporally detailed social network. Mach. Learn. 106(8), 1133–1169 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Habiba, H., Tantipathananandh, C., Berger-Wolf, T.Y.: Betweenness centrality measure in dynamic networks. Technical Report 19, Department of Computer Science, University of Illinois at Chicago, Chicago, DIMACS Technical Report (2007)

    Google Scholar 

  18. Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for temporal networks. J. Comput. Syst. Sci. 64(4), 820–842 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kim, H., Anderson, R.: Temporal node centrality in complex networks. Phys. Rev. E 85(2), 026107 (2012)

    Google Scholar 

  20. Puzis, R., Elovici, Y., Zilberman, P., Dolev, S., Brandes, U.: Topology manipulations for speeding betweenness centrality computation. J. Complex Netw. 3(1), 84–112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Riondato, M., Kornaropoulos, E.M.: Fast approximation of betweenness centrality through sampling. Data Min. Knowl. Discov. 30(2), 438–475 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rymar, M., Molter, H., Nichterlein, A., Niedermeier, R.: Towards classifying the polynomial-time solvability of temporal betweenness centrality. CoRR, abs/2105.13055 (2021). https://arxiv.org/abs/2105.13055

  23. Sariyüce, A.E., Kaya, K., Saule, E., Çatalyürek, Ü.V.: Graph manipulations for fast centrality computation. ACM Trans. Knowl. Discovery Data 11(3):26:1–26:25 (2017)

    Google Scholar 

  24. Simard, F., Magnien, C., Latapy, M.: Computing betweenness centrality in link streams. CoRR, abs/2102.06543 (2021). https://arxiv.org/abs/2102.06543

  25. Tang, J., Musolesi, M., Mascolo, C., Latora, V., Nicosia, V.: Analysing information flows and key mediators through temporal centrality metrics. In: Proceedings of the 3rd Workshop on Social Network Systems (SNS 2010). Association for Computing Machinery (2010)

    Google Scholar 

  26. Tsalouchidou, I., Baeza-Yates, R., Bonchi, F., Liao, K., Sellis, T.: Temporal betweenness centrality in dynamic graphs. Int. J. Data Sci. Anal. 9(3), 257–272 (2020)

    Article  Google Scholar 

  27. Williams, M.J., Musolesi, M.: Spatio-temporal networks: reachability, centrality and robustness. Roy. Soc. Open Sci. 3(6) (2016)

    Google Scholar 

  28. Wu, H., Cheng, J., Ke, Y., Huang, S., Huang, Y., Wu, H.: Efficient algorithms for temporal path computation. IEEE Trans. Knowl. Data Eng. 28(11), 2927–2942 (2016)

    Article  Google Scholar 

  29. Zschoche, P., Fluschnik, T., Molter, H., Niedermeier, R.: The complexity of finding separators in temporal graphs. J. Comput. Syst. Sci. 107, 72–92 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Molter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rymar, M., Molter, H., Nichterlein, A., Niedermeier, R. (2021). Towards Classifying the Polynomial-Time Solvability of Temporal Betweenness Centrality. In: Kowalik, Ł., Pilipczuk, M., Rzążewski, P. (eds) Graph-Theoretic Concepts in Computer Science. WG 2021. Lecture Notes in Computer Science(), vol 12911. Springer, Cham. https://doi.org/10.1007/978-3-030-86838-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-86838-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-86837-6

  • Online ISBN: 978-3-030-86838-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics