Skip to main content

Facial and Cochlear Nerves Characterization Using Deep Reinforcement Learning for Landmark Detection

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021 (MICCAI 2021)

Abstract

We propose a pipeline for the characterization of facial and cochlear nerves in CT scans, a task specifically relevant for cochlear implant surgery planning. These structures are hard to locate in clinical CT scans due to their small size relative to the image resolution, the lack of contrast, and the proximity to other similar structures in this region. We define key landmarks around the facial and cochlear nerves and locate them using deep reinforcement learning with communicative multi-agents based on the C-MARL model. These landmarks are used as initialization for customized characterization methods. These include the automated direct measurement of the diameter of the cochlear nerve canal and extraction of the cochlear nerve cross-section followed by its segmentation using active contours. We also derive a path selection algorithm for optimal geodesic pathfinding selection based on Dijkstra’s algorithm for the characterization of the facial nerve. A total of 119 clinical CT images from preoperative patients have been used to develop this pipeline that produces accurate characterizations of these nerves in the cochlear region and provides reliable measurements for computer-aided diagnosis and surgery planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Celik, O., Eskiizmir, G., Pabuscu, Y., Ulkumen, B., Toker, G.T.: The role of facial canal diameter in the pathogenesis and grade of bell’s palsy: a study by high resolution computed tomography. Brazilian J. Otorhinol. 83, 261–268 (2017)

    Article  Google Scholar 

  2. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  3. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische mathematik 1(1), 269–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fatterpekar, G.M., Mukherji, S.K., Lin, Y., Alley, J.G., Stone, J.A., Castillo, M.: Normal canals at the fundus of the internal auditory canal: CT evaluation. J. Comput. Assist. Tomogr. 23, 776–780 (1999)

    Article  Google Scholar 

  5. Fauser, J., et al.: Toward an automatic preoperative pipeline for image-guided temporal bone surgery. Int. J. Comput. Assist. Radiol. Surg. 14(6), 967–976 (2019)

    Article  Google Scholar 

  6. Gare, B.M., Hudson, T., Rohani, S.A., Allen, D.G., Agrawal, S.K., Ladak, H.M.: Multi-atlas segmentation of the facial nerve from clinical CT for virtual reality simulators. Int. J. Comput. Assist. Radiol. Surg. 15, 259–267 (2020)

    Article  Google Scholar 

  7. Ghesu, F.C., Georgescu, B., Grbic, S., Maier, A.K., Hornegger, J., Comaniciu, D.: Robust multi-scale anatomical landmark detection in incomplete 3D-CT data. Proc. MICCAI 2017, 194–202 (2017)

    Google Scholar 

  8. Ghesu, F.C., Georgescu, B., Mansi, T., Neumann, D., Hornegger, J., Comaniciu, D.: An artificial agent for anatomical landmark detection in medical images. Proc. MICCAI 2016, 229–237 (2016)

    Google Scholar 

  9. Ghesu, F.C., et al.: Multi-scale deep reinforcement learning for real-time 3D-landmark detection in CT scans. IEEE Trans. Pattern Anal. Mach. Intell. 41, 176–189 (2019)

    Article  Google Scholar 

  10. Hatch, J.L., et al.: Can preoperative CT scans be used to predict facial nerve stimulation following CI? Otol. Neurotol. 38, 1112–1117 (2017)

    Article  Google Scholar 

  11. Leroy, G., Rueckert, D., Alansary, A.: Communicative reinforcement learning agents for landmark detection in brain images. In: Kia, S.M., et al. (eds.) MLCN/RNO-AI -2020. LNCS, vol. 12449, pp. 177–186. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66843-3_18

    Chapter  Google Scholar 

  12. Li, Y., et al.: Fast multiple landmark localisation using a patch-based iterative network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 563–571. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_64

    Chapter  Google Scholar 

  13. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015)

    Article  Google Scholar 

  14. Nikan, S., Osch, K.V., Bartling, M., Allen, D.G., Rohani, S.A., Connors, B., Agrawal, S.K., Ladak, H.M.: PWD-3DNet: a deep learning-based fully-automated segmentation of multiple structures on temporal bone CT scans. IEEE Trans. Image Process. 30, 739–753 (2021)

    Article  Google Scholar 

  15. Noble, J.H., Warren, F.M., Labadie, R.F., Dawant, B.M.: Automatic segmentation of the facial nerve and chorda tympani in CT images using spatially dependent feature values. Med. Phys. 35, 5375–5384 (2008)

    Article  Google Scholar 

  16. Noothout, J.M.H., de Vos, B.D., Wolterink, J.M., Leiner, T., Isgum, I.: CNN-based landmark detection in cardiac CTA scans. CoRR abs/1804.04963 (2018). http://arxiv.org/abs/1804.04963

  17. Oktay, O., et al.: Stratified decision forests for accurate anatomical landmark localization in cardiac images. IEEE Trans. Med. Imaging 36, 332–342 (2017)

    Article  Google Scholar 

  18. Trier, P., Karsten Noe, M.S.S.: The visible ear simulator (2020). https://ves.alexandra.dk/

  19. Powell, K.A., Kashikar, T., Hittle, B., Stredney, D., Kerwin, T., Wiet, G.J.: Atlas-based segmentation of temporal bone surface structures. Int. J. Comput. Assist. Radiol. Surg. 14, 1267–1273 (2019)

    Article  Google Scholar 

  20. Powell, K.A., Liang, T., Hittle, B., Stredney, D., Kerwin, T., Wiet, G.J.: Atlas-based segmentation of temporal bone anatomy. Int. J. Comput. Assist. Radiol. Surg. 12, 1937–1944 (2017)

    Article  Google Scholar 

  21. Vlontzos, A., Alansary, A., Kamnitsas, K., Rueckert, D., Kainz, B.: Multiple landmark detection using multi-agent reinforcement learning. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 262–270. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_29

    Chapter  Google Scholar 

  22. Voormolen, E.H., et al.: Determination of a facial nerve safety zone for navigated temporal bone surgery. Neurosurgery 70, 50–60 (2012)

    Google Scholar 

  23. Waldman, S.D.: Chapter 9 - the vestibulocochlear nerve—cranial nerve viii. In: Waldman, S.D. (ed.) Pain Review, pp. 22–25. W.B. Saunders, Philadelphia (2009). http://www.sciencedirect.com/science/article/pii/B9781416058939000095

  24. Watkins, C.J.C.H.: Learning from Delayed Rewards. Ph.D. thesis, King’s College, Cambridge, UK, May 1989

    Google Scholar 

  25. Xu, Z., et al.: Supervised action classifier: approaching landmark detection as image partitioning. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 338–346. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_39

    Chapter  Google Scholar 

  26. Yushkevich, P.A., Piven, J., Cody Hazlett, H., Gimpel Smith, R., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–1128 (2006)

    Article  Google Scholar 

  27. Zhang, D., Liu, Y., Noble, J.H., Dawant, B.M.: Automatic localization of landmark sets in head CT images with regression forests for image registration initialization. Med. Imaging 2016 Image Process. 9784, 97841M (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula López Diez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López Diez, P., Sundgaard, J.V., Patou, F., Margeta, J., Paulsen, R.R. (2021). Facial and Cochlear Nerves Characterization Using Deep Reinforcement Learning for Landmark Detection. In: de Bruijne, M., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science(), vol 12904. Springer, Cham. https://doi.org/10.1007/978-3-030-87202-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87202-1_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87201-4

  • Online ISBN: 978-3-030-87202-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics