Skip to main content

Frequency-Based Convolutional Neural Network for Efficient Segmentation of Histopathology Whole Slide Images

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12889))

Included in the following conference series:

  • 1666 Accesses

Abstract

CNN-based methods for WSI segmentation are time-consuming under the limits of communication bandwidth and memory usage, due to the high pixel resolution of WSIs. In this paper, we propose a novel framework for accelerating the segmentation of digital histopathology WSIs in the frequency domain. Based on the characteristics of the JPEG format in data storage and transmission on the existing digital histopathological diagnosis cloud platform, we extract DCT coefficients from the JEPG decoding and compress them into the DCT feature cubes by a frequency selection block. Based on the DCT feature cubes, we propose an extremely light-weighted model named Efficient DCT-Network (EDCT-Net). The size of the input data, as well as the bandwidth requirement for CPU-GPU transmitting, for EDCT-net reduces by 96% compared to the common CNN-based methods. And, the number of model parameters and the floating-point operations (FLOPs) for EDCT-Net decreases by 98% and 94% compared to the baseline method. The experimental results have demonstrated that our method achieves a Dice score of 0.811 with only 8 frequency channels in the task of endometrial histopathology WSI segmentation, which is comparable with state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 1 (2017)

    Google Scholar 

  2. Bandi, P., et al.: From detection of individual metastases to classification of Lymph Node Status at the patient level: the CAMELYON17 challenge. IEEE Trans. Med. Imaging 38(2), 550–560 (2019)

    Article  Google Scholar 

  3. Bejnordi, B.E., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017)

    Article  Google Scholar 

  4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, Atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  6. Hollon, T.C., et al.: Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nat. Med. 26(1), 52–58 (2020)

    Article  Google Scholar 

  7. Howard, A., et al.: Searching for mobilenetv3. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (2020)

    Google Scholar 

  8. Huang, G., Liu, Z., Laurens, V., Weinberger, K.Q.: Densely connected convolutional networks. IEEE Computer Society (2016)

    Google Scholar 

  9. Lerousseau, M., et al.: Weakly supervised multiple instance learning histopathological tumor segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 470–479. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_45

    Chapter  Google Scholar 

  10. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2015)

    Google Scholar 

  11. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  12. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Sun, S., Jiang, B., Zheng, Y., Xie, F.: A comparative study of CNN and FCN for histopathology whole slide image analysis. In: Zhao, Y., et al. (eds.) ICIG 2019. LNCS, vol. 11902, pp. 558–567. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34110-7_47

    Chapter  Google Scholar 

  14. Sun, S., Yuan, H., Zheng, Y., Zhang, H., Hu, D., Jiang, Z.: Cancer sensitive cascaded networks (CSC-NET) for efficient histopathology whole slide image segmentation. In: IEEE 17th International Symposium on Biomedical Imaging (ISBI) (2020)

    Google Scholar 

  15. Szegedy, C., Wei, L., Jia, Y., Sermanet, P., Rabinovich, A.: Going deeper with convolutions. IEEE Computer Society (2014)

    Google Scholar 

  16. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114 (2019)

    Google Scholar 

  17. Tokunaga, H., Teramoto, Y., Yoshizawa, A., Bise, R.: Adaptive weighting multi-field-of-view CNN for semantic segmentation in pathology, pp. 12589–12598 (2019). https://doi.org/10.1109/CVPR.2019.01288

  18. Veta, M., et al.: Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge. Med. Image Anal. 54, 111–121 (2019)

    Article  Google Scholar 

  19. Xu, K., Qin, M., Sun, F., Wang, Y., Chen, Y.K., Ren, F.: Learning in the frequency domain (2020)

    Google Scholar 

  20. Zheng, S., et al.: Conditional random fields as recurrent neural networks. In: 2015 IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  21. Zheng, Y., Jiang, B., Shi, J., Zhang, H., Xie, F.: Encoding histopathological WSIs using GNN for scalable diagnostically relevant regions retrieval. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 550–558. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_61

    Chapter  Google Scholar 

  22. Zheng, Y., et al.: Diagnostic regions attention network (DRA-Net) for histopathology WSI recommendation and retrieval. IEEE Trans. Med. Imaging 40(3), 1090–1103 (2021)

    Google Scholar 

  23. Zheng, Y., et al.: Feature extraction from histopathological images based on nucleus-guided convolutional neural network for Breast Lesion classification. Pattern Recogn. 71, 14–25 (2017)

    Article  Google Scholar 

Download references

Acknowledgment

This work was partly supported by the National Natural Science Foundation of China (Grant No. 61771031, 61901018, and 61906058), partly by China Postdoctoral Science Foundation (No. 2019M650446) and partly by Tianjin Science and Technology Major Project (Grant No. 18ZXZNSY00260).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yushan Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luo, W., Zheng, Y., Hu, D., Li, J., Xue, C., Jiang, Z. (2021). Frequency-Based Convolutional Neural Network for Efficient Segmentation of Histopathology Whole Slide Images. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12889. Springer, Cham. https://doi.org/10.1007/978-3-030-87358-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87358-5_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87357-8

  • Online ISBN: 978-3-030-87358-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics