Skip to main content

Using Conv-LSTM to Refine Features for Lightweight Image Super-Resolution Network

  • Conference paper
  • First Online:
Image and Graphics (ICIG 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12890))

Included in the following conference series:

  • 2322 Accesses

Abstract

In this paper, we propose a lightweight network that uses conv-LSTM for feature fusion (LFN) to improve image super-resolution performance and save the number of parameters. The network extracts features of different levels from the input image through a deep extraction block (DB) composed of two hourglass blocks (HB). HB progressively compresses and expands the channel of the input feature map to achieve compact feature aggregation and amplification, thereby making the information in the network more compact. The information at different levels in the network is regarded as a sequence, and Conv-LSTM is used to repeatedly fuse and extract more effective information from this sequence to obtain an effective expression. Experimental results show that our network can achieve a good balance between performance, number of parameters and amount of calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: CVPR Workshops (2017)

    Google Scholar 

  2. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: BMVC (2012)

    Google Scholar 

  3. Choi, J.H., Kim, J.H., Cheon, M., Lee, J.S.: Lightweight and efficient image super-resolution with block state-based recursive network. arXiv preprint arXiv:1811.12546 (2018)

  4. Chu, X., Zhang, B., Ma, H., Xu, R., Li, J., Li, Q.: Fast, accurate and lightweight super-resolution with neural architecture search. arXiv preprint arXiv:1901.07261 (2019)

  5. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  6. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  7. Han, W., Chang, S., Liu, D., Yu, M., Witbrock, M., Huang, T.S.: Image super-resolution via dual-state recurrent networks. In: CVPR (2018)

    Google Scholar 

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  9. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR (2015)

    Google Scholar 

  10. Hui, Z., Wang, X., Gao, X.: Fast and accurate single image super-resolution via information distillation network. In: CVPR (2018)

    Google Scholar 

  11. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: CVPR (2016)

    Google Scholar 

  12. Kim, J., Kwon Lee, J., Mu Lee, K.: Deeply-recursive convolutional network for image super-resolution. In: CVPR (2016)

    Google Scholar 

  13. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep Laplacian pyramid networks for fast and accurate super-resolution. In: CVPR (2017)

    Google Scholar 

  14. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: CVPR Workshops (2017)

    Google Scholar 

  15. Lin, T.Y., Dollr, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  16. Martin, D., Fowlkes, C., Tal, D., Malik, J., et al.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV, Vancouver (2001)

    Google Scholar 

  17. Merity, S., Keskar, N.S., Socher, R.: Regularizing and optimizing LSTM language models. arXiv preprint arXiv:1708.02182 (2017)

  18. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR (2016)

    Google Scholar 

  19. Srivastava, N., Mansimov, E., Salakhutdinov, R.: Unsupervised learning of video representations using LSTMs. In: ICML (2015)

    Google Scholar 

  20. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: CVPR (2017)

    Google Scholar 

  21. Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: a persistent memory network for image restoration. In: ICCV (2017)

    Google Scholar 

  22. Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip connections. In: ICCV (2017)

    Google Scholar 

  23. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  24. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyun Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Qu, Y., Chen, L. (2021). Using Conv-LSTM to Refine Features for Lightweight Image Super-Resolution Network. In: Peng, Y., Hu, SM., Gabbouj, M., Zhou, K., Elad, M., Xu, K. (eds) Image and Graphics. ICIG 2021. Lecture Notes in Computer Science(), vol 12890. Springer, Cham. https://doi.org/10.1007/978-3-030-87361-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87361-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87360-8

  • Online ISBN: 978-3-030-87361-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics